我将为大家整理一份关于 Dify、n8n 和 Ragflow 的最新研究分析,涵盖以下六个方面:功能对比、应用场景、架构设计、集成能力、和使用门槛。我会尽可能引用其官方文档、GitHub 仓库以及社区讨论等权威信息来源。 我整理好后会第一时间通知你查看。
1.Dify、n8n 和 RAGFlow 最新研究分析
在生成式 AI 工具生态中,Dify、n8n 和 RAGFlow 是近期备受关注的三个开源项目。它们在功能定位、应用场景和架构设计等方面各有侧重。本文将从六个维度对三者进行对比分析:功能对比、应用场景、架构设计、集成能力、开源社区活跃度和使用门槛。
1.1功能对比
Dify、n8n 和 RAGFlow 都提供了一定程度的[工作流编排]和 AI 集成功能,但侧重点不同。下表总结了三者在主要功能上的异同:
功能 / 特性 | Dify | n8n | RAGFlow |
---|---|---|---|
工作流编排支持 | ✅ 提供可视化 AI 工作流编排,支持将复杂任务拆解为节点 (RAG+AI 工作流 + Agent:LLM 框架该如何选择, |