背景与挑战:AI如何看懂视频?
视频理解是AI领域的“高阶技能”——不仅要识别画面中的物体,还要分析动作的前后逻辑(比如“为什么球会滚到这里?”)。然而,现有的多模态大模型(MLLMs)在视频推理上有两大难题:
- 时间建模不足:很多模型只会“看单张截图”,忽略视频的时间顺序,导致推理错误(比如误判车祸中的能量损耗)。
- 高质量数据稀缺:现有的视频数据集大多只教AI“认东西”,缺乏需要复杂推理的问题(比如物理题或逻辑题)。
核心创新:新算法+混合数据,双管齐下
为了解决问题,Video-R1团队祭出两大“杀手锏”:
*算法升级:T-GRPO*
- 核心思想:让AI对比“正常顺序视频”和“打乱顺序视频”的表现,只有前者正确率更高时才给奖励。
- 效果:逼着AI学会“看剧情发展”,而不是单帧“蒙答案”。就像老师通过对比学生看正常电影和乱序片段的表现,来奖励真正理解故事的学生。
*数据策略:图像+视频混合训练*
- 图像数据(如数学题、图表题):教AI基础的逻辑推理能力。
- 视频数据(如物理实验、日常场景):训练时间推理能力。
- 数据集:团队构建了26万条混合数据(Video-R1-260k),涵盖数理、空间、常识等多种题型。
实验成果:7B小模型吊打GPT-4o?
团队在6大视频推理基准测试中验证效果,结果惊人:
- VSI-Bench(空间推理):Video-R1-7B准确率35.8%,超过GPT-4o的34%。
- VideoMMMU(知识推理):52.3%准确率,远超同类模型。
- 通用视频理解(如MVBench):性能全面提升。
关键结论:
- 强化学习(RL)是灵魂:仅用1000步RL训练,模型就从“死记硬背”进化到“灵活推理”。
- 帧数越多越好:输入视频帧从16帧增加到32帧后,性能显著提升,说明“看全片”很重要!
有趣发现:“顿悟时刻”
在训练中,模型偶尔会表现出类似人类的“自我反思”行为:
- 例子:先给出一个答案,中途发现矛盾,重新分析视频帧,最终修正结论。
- 意义:这说明AI并非机械执行,而是在“动脑子”——像学生做题时反复检查步骤!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。