作为人工智能网络安全的重大飞跃, 谷歌宣布推出 Sec-Gemini v1,这是一种实验性新模型,旨在在与网络威胁的持续斗争中改变平衡,有利于防御者 。
这个尖端的 AI 系统由 Google 的 Sec-Gemini 团队开发, 将 Gemini 的高级推理与实时威胁情报相结合, 在威胁检测、根本原因分析和漏洞评估方面提供前所未有的准确性 。
为什么 Sec-Gemini v1 很重要:改变网络安全的天平
长期以来,网络安全一直存在一个根本性的不对称性:
🔴 攻击者只需要一次成功的利用就可以攻破系统。
🛡️ 防御者必须抵御所有可能的威胁 — 这是一项几乎不可能完成的任务。
Sec-Gemini v1 旨在通过增强安全团队的能力来改变这种动态 : ✔ 近乎实时的威胁情报 (通过 Google 威胁情报、OSV 和 Mandiant 数据 )
✔ 卓越的推理 ,实现更快、更准确的事件响应
✔ 对漏洞和威胁行为者的深度上下文感知
Sec-Gemini v1 如何超越竞争对手
Google 的基准测试显示,与现有模型相比, 性能有了显著提高 :
📊 CTI-MCQ(威胁情报基准) ✅ Sec-Gemini v1 在识别和分析网络威胁方面比竞争对手至少高出 11%。
📊 CTI - 根本原因映射 (漏洞分析) ✅ 将漏洞追踪到根本原因并将其归入 CWE 分类法的能力提高了 10.5%。
*Sec-Gemini v1 在 CTI-MCQ 网络安全威胁情报基准测试中优于其他型号。*
*Sec-Gemini v1 在网络安全威胁情报-根本原因映射 (CTI-RCM) 基准测试中优于其他模型,该基准测试评估了 LLM 理解漏洞描述的细微差别、识别潜在根本原因的漏洞并根据 CWE 分类法准确分类的能力。*
示例:分析 “Salt Typhoon” 威胁行为者
当被问及 **APT 组“盐台风”时,**Sec-Gemini v1:
✔ 正确识别其为已知威胁行为者 (许多模型在这方面失败)
✔ 提供详细的背景( 通过 Mandiant 威胁情报 )
✔ 链接相关漏洞 (使用 Google 的 OSV 数据库 )
✔ 评估现实世界的风险影响 — 帮助分析师更快地确定威胁的优先级
谁可以访问?Google 的开放研究方法
与封闭的商业 AI 工具不同,Google 正在向以下
🔹公司免费提供 Sec-Gemini v1(用于研究): 网络安全公司
🔹R 学术机构
🔹R 非政府组织和威胁研究人员
目标是什么? 促进协作 ,进一步推动 AI 驱动型防御。
AI 在网络安全领域的未来
Sec-Gemini v1 是利用 AI 实现以下目标的一个重要里程碑 :
🚀 减少分析师的工作量 (自动执行繁琐的任务)
🚀 提高威胁检测的准确性
🚀 加快事件响应速度
随着网络攻击变得越来越复杂,像这样的工具最终可以让防御者占据上风 。
最后的思考
借助 Sec-Gemini v1,Google 不仅发布了另一个 AI 模型,还为网络安全团队提供了决定性的优势 。这会成为打击网络犯罪的转折点吗? 安全社区的测试很快就会证明。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。