一文搞懂:提示词工程(Prompt)

一、什么是提示词工程

提示词(Prompt)是指在使用大语言模型时,用户向模型提供的输入,用于引导模型生成特定类型、主题或格式的文本输出。这种输入可以是一个问题、一个描述、一组关键词或上下文信息;

提示词工程(Prompt Engineering):是一门系统性学科,涵盖提示词的设计、优化、上下文管理以及与大模型交互的策略。例如:

• 格式设计:确定指令结构(如分步骤、关键词引导);

• 内容优化:通过迭代测试调整措辞,提升准确性;

• 上下文整合:利用历史对话或外部知识增强逻辑连贯性。

通过设计和优化输入提示(prompt)的过程,以引导模型生成预期的输出或行为。它涉及到编写高效、准确的提示词,**以确保AI模型能够准确、高效地执行用户的指令,**帮助用户将大型语言模型用于各种应用场景和研究领域。

Prompt不仅仅是简单地构造输入文本,更是涉及到对模型行为的深入理解,以及对各种影响因素的综合考量。通过不断地实验、优化,提示工程师能够设计出最适合特定任务和场景的提示,引导大语言模型生成精准、富有洞察力的输出。这是一个迭代的过程,需要不断地调整和改进提示,以适应不同的需求和模型特性。

为什么需要Prompt?

大语言模型(LLM)本身已具备极高的性能与复杂性,但还有很大潜力需要挖掘。

Prompt如同钥匙一般,能够精确引导模型生成特定需求的输出。

调整Prompt,实际上就是在改变我们与模型交流的语言和方式,这种变化往往能带来出乎意料的输出效果差异。更重要的是,这一过程无需微调模型修改参数,只需在外部灵活调整提示词输入。

Prompt的核心要素包括:明确的任务指示、相关上下文、示例参考、用户输入以及具体的输出要求。

• 指示(Instructions):想要模型执行的特定任务或指令。

• 上下文(Context):包含外部信息或额外的上下文信息,引导语言模型更好地响应。

• 例子(Examples):通过给出具体示例来展示期望的输出格式或风格。

• 输入(Input):用户输入的内容或问题。

• 输出(Output):指定输出的类型或格式。

*二、推理大模型的发展下,未来是否还需要提示词工程*

尽管推理型大模型(如DeepSeek-R1)具备更强的自主推理能力,但提示词工程的价值并未减弱,反而迎来以下转型:

1)从“指令拆分”到“目标导向”

• 传统指令型模型:需明确步骤(如“先分析市场,再制定策略”),依赖CoT(思维链)提示。

• 推理型模型:只需提供目标和背景(如“为环保电商设计市场进入策略”),模型自主推导路径。
案例

• 差提示:“分三步分析特斯拉财报风险”→ 限制模型创造力;

• 优提示:“分析特斯拉2023年财报隐含风险,考虑市场、供应链和政策”→ 激发模型深度关联能力。

2)高级提示技巧的进化

元提示(Meta-Prompting):让模型自我优化提示词(如“请优化以下提示词以更好完成XX任务”);

• 提示词缓存(Prompt Caching):在长上下文场景中复用已验证的高效提示,降低计算成本;

• 多模型协作:结合推理型模型(创造性任务)与指令型模型(稳定性任务),通过提示工程实现优势互补。

3)业务落地的关键保障

• 精准性需求:医疗、金融等领域需严格规避“幻觉”,依赖提示工程约束输出逻辑(如“引用最新医学指南”);

• 经济性考量:通过提示优化减少API调用次数(如用RAG检索增强减少模型计算量)。

*三、提示词的分类*

以下是提示词工程的类型及其示例的思维导图:

img

*四、不同类型提示词详解*

接下来,我将一个类型一个类型地进行介绍:

4.1 直接提示

1. Zero-Shot(零样本提示)

定义:零样本提示是指直接给模型一个任务,不提供任何示例,让模型直接生成答案。

原理:利用模型的泛化能力理解新任务。

优势:无需准备大量的训练数据,节省时间和资源。

适用场景:适用于模型已经具备一定知识储备的任务,如常识问答、简单推理等。

示例

提示词:请解释什么是人工智能。 输出:人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

**
**

2. Few-Shot(少样本提示)

定义:少样本提示是给模型提供少量的示例,帮助模型理解任务的要求,从而更好地生成答案。

原理:通过模式模仿降低任务模糊性。

关键要素:示例的质量和相关性对结果影响较大。

适用场景:适用于需要一定上下文理解或特定格式输出的任务,如文本分类、句子改写等。

示例

提示词: 请将以下句子翻译成英文: 示例1:好的,我来试试。→ Okay, I’ll give it a shot. 示例2:这很简单。→ This is very simple. 请将“我今天很高兴”翻译成英文。 输出:I am very happy today.

3. Act/ReAct(行动与反思)

定义:ReAct将推理与行动结合在一起,利用LLMs解决各种语言推理和决策任务。

原理:通过交替生成与任务相关的口头推理轨迹和行动,使模型能够执行动态推理以构建和修改行动的高层计划。

适用场景:适用于需要动态推理和决策的任务,如复杂问题解决、多步骤任务执行等。

示例

提示词:请解决以下问题,并展示你的推理过程和行动。问题:小明有10元钱,他想买一支笔和一个笔记本。笔的价格是3元,笔记本的价格是7元。他能买下这两样东西吗?输出: 首先,我需要计算小明购买这两样东西所需的总金额:3元 + 7元 = 10元。 然后,我比较小明的钱和所需总金额:10元 = 10元。 最后,得出结论:小明能买下这两样东西。

4.2 链式提示

1. CoT(思维链,Chain of Thought)

定义:COT提示是引导模型逐步进行推理,将复杂问题分解成多个中间步骤,模拟人类的推理过程。

原理:通过让模型展示其推理过程,提高多步推理和逻辑分析类任务的表现。

适用场景:适用于需要复杂推理的任务,如数学问题解决、逻辑推理等。

示例

提示词:这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。 让我们逐步思考。 输出: 首先,找出所有的奇数:9、15、1。 然后,将它们相加:9 + 15 + 1 = 25。 最后,判断25是否为偶数,结果是False。

2. ToT(思维树,Tree of Thought)

定义:

ToT是一种基于树状分支结构的推理框架,允许模型同时探索多种可能的解决方案路径,并通过动态评估和择优选择最终答案。其核心是模拟人类多路径思考与决策过程,结合搜索算法(如深度优先搜索DFS、广度优先搜索BFS)和评估机制,解决复杂问题。

原理:

多路径生成:将问题分解为多个中间步骤,每个步骤生成多个候选方案(如数学问题的不同解法或战略规划的不同路径)。

动态评估与筛选:通过自评分或外部工具验证路径可行性,保留高价值分支并剪枝低效路径。

搜索与收敛:利用树状结构管理和回溯路径,最终收敛到最优解。

适用场景:

• 需要战略规划或创造性发散的任务:如数独解谜、战略决策、创意写作。

• 高不确定性场景:例如复杂游戏策略(围棋、国际象棋)、多因素影响的商业决策。

示例:

提示词

解决以下数独问题:
5 3 0 | 0 7 0 | 0 0 0
6 0 0 | 1 9 5 | 0 0 0
0 9 8 | 0 0 0 | 0 6 0
------±-----±-----
8 0 0 | 0 6 0 | 0 0 3
4 0 0 | 8 0 3 | 0 0 1
7 0 0 | 0 2 0 | 0 0 6
------±-----±-----
0 6 0 | 0 0 0 | 2 8 0
0 0 0 | 4 1 9 | 0 0 5
0 0 0 | 0 8 0 | 0 7 9
请按以下步骤思考:
列出所有可能的数字填充候选。
评估候选是否导致矛盾。
选择最合理的路径继续填充。

输出

步骤1:在第一行空缺处(列4),候选数字为1、2、4。 步骤2:若填入1,则第三行出现重复数字;填入2则无矛盾。 步骤3:继续填充下一空缺,重复评估逻辑直至完成。

3. Reflexion(自我反思)

定义:

Reflexion是一种通过自我验证与外部反馈结合的迭代优化机制,模型在生成初步答案后,利用批判性评估修正错误,最终输出高可靠性结果。其本质是强化学习框架,结合环境反馈与内部推理。

原理:

1.生成-评估闭环

初步输出:基于任务生成初始答案(如代码、法律条文草案)。

多维度评估:检查逻辑漏洞(如代码语法错误)、事实矛盾(如法律条文与现有法规冲突)。

迭代修正:根据评估结果调整输出,可能涉及多轮优化。

2.外部工具整合:调用编译器、数据库等验证答案可行性(如执行代码检查报错)。

适用场景:

高精度要求的修正任务:如代码Debug、法律文书修订、学术论文逻辑校验。

动态环境下的决策:例如实时数据分析纠偏、机器人动作路径优化。

示例:

提示词

请编写一个Python函数,计算斐波那契数列的第n项,并确保处理边界条件。

输出迭代过程

1.初始答案

Python def fibonacci(n): if n <= 1: return n else: return fibonacci(n-1) + fibonacci(n-2)

2.评估

问题1:递归效率低,n较大时栈溢出。

问题2:未处理n为负数的情况。

3.修正后答案

Python def fibonacci(n): if n < 0: raise ValueError(“n必须为非负整数”) a, b = 0, 1 for _ in range(n): a, b = b, a + b return a

4.3 生成类提示

1. LTM(Least-to-Most,最少到最多提示)

定义:LTM提示是一种策略,通过从简单到复杂的方式引导模型,先解决简单的问题,再逐步增加难度。

策略:帮助模型逐步建立对任务的理解,提高解决复杂问题的能力。

适用场景:适用于需要逐步引导模型理解任务的场景,如复杂文本生成、多步骤推理等。

示例

提示词: 第一步:请列出三个水果的名称。 输出:苹果、香蕉、橙子。 第二步:请描述苹果的外观特征。 输出:苹果通常是红色或绿色的,形状呈圆形,表面光滑。 第三步:请根据以上信息,写一段关于苹果的描述。 输出:苹果是一种常见的水果,通常呈红色或绿色,形状为圆形,表面光滑。它不仅美味可口,而且富含营养。

2. Generate Knowledge(知识生成)

定义:

Generate Knowledge 要求模型在回答问题时先生成与任务相关的知识片段(如事实、规则、原理等),再基于这些知识生成最终答案。其核心是通过预先生成的结构化知识提升模型在复杂推理任务中的准确性和逻辑性。

原理:

1.知识生成:模型根据任务需求生成相关背景知识(例如科学原理、行业规则或程序性步骤),形成辅助推理的信息库。

2.知识整合:将生成的知识片段与问题结合,引导模型基于知识库进行逻辑推理和答案生成。

3.置信度筛选:通过评估生成知识的可靠性(如模型自评分或外部验证),选择高置信度知识用于最终决策。

适用场景:

需要背景知识支撑的任务:如科学问题解答、技术文档撰写、法律条文分析。

常识推理类任务:例如解释物理现象、验证历史事件因果关系。

示例:

提示词

量子计算的核心原理是什么?请先列出三大原理,再解释其应用场景。

输出

生成的知识:
1.量子叠加(Qubit可同时处于0和1状态)
2.量子纠缠(粒子状态相互关联)
3.量子隧穿(粒子穿越势垒)
应用场景:
1.量子加密通信(利用纠缠特性)
2.药物分子模拟(依赖叠加加速计算)

3. Automatic Prompt Engineer(自动提示)

定义:

Automatic Prompt Engineer(APE)是一种通过模型自动生成、测试和优化提示词的框架,利用搜索算法(如贝叶斯优化)和模型自反馈,替代人工设计提示词的过程。

原理:

1.候选生成:由模型生成多种候选提示词(如通过逆向推理或任务示例填充模板)。

2.动态评估:基于任务执行结果(如准确率)或模型对数概率评分,筛选最优提示词。

3.迭代优化:采用蒙特卡洛搜索或多臂老虎机算法,在优质提示词附近生成语义变体并重复评估,直至收敛。

适用场景:

大规模提示词优化:如企业级AI客服系统需快速适配多场景提示模板。

跨模型适配:需为不同LLM(如GPT-4、Claude)自动生成适配指令。

示例:

提示词优化流程

1.初始指令

请解释机器学习中的过拟合现象。

2.APE生成候选

“分步骤解释过拟合的定义、成因及解决方案。” “用比喻说明过拟合,并对比训练集与测试集表现。”

3.最优选择

Plain Text 评估后选择:“过拟合指模型在训练集表现优异但测试集差。成因包括数据量不足或模型复杂度过高,可通过交叉验证或正则化解决。”

4.4 图谱提示

1.知识图谱引导

定义:

知识图谱引导是一种通过结构化知识库(如三元组、实体关系网络)为模型提供背景知识,辅助其进行深度语义推理的提示工程技术。其核心是将知识图谱中的实体、关系、属性等结构化信息与问题结合,增强模型对复杂逻辑和隐性关联的理解能力。

原理:

1.知识注入:将知识图谱中的实体、关系、属性等结构化信息嵌入提示词,为模型提供明确的语义关联和领域背景。

2.路径推理:基于知识图谱的图结构,引导模型沿实体关系路径进行多跳推理(如从“贾宝玉”到“贾母”再到“家族权力结构”)。

3.动态筛选:结合知识图谱的图神经网络(GNN)技术,对候选推理路径进行权重评估,优先选择高置信度路径

适用场景:

需要深度语义关联的任务:如文学分析、法律案件推演、医疗诊断。

跨领域知识融合:例如金融风控(结合企业图谱与供应链数据)、跨学科研究(如历史事件与地理数据联动)。

示例:

提示词

分析《红楼梦》中贾宝玉与林黛玉的关系,结合家族背景和事件线索生成人物关系图及关键事件影响分析。

输出

知识图谱构建:实体:贾宝玉(荣国府继承人)、林黛玉(姑苏林家嫡女)、贾母(家族权力核心)关系:贾宝玉与林黛玉为表兄妹(血缘关系);贾母偏袒宝玉(权力影响);黛玉寄居荣国府(社会地位差异)

关键事件推理:

元妃省亲事件:贾府地位提升→宝玉婚姻选择受政治影响→宝黛爱情受阻

黛玉葬花:性格孤傲→与家族利益冲突→人际关系边缘化

关系可视化:生成包含人物情感线、权力层级的事件影响图谱。

2.实体关系引导推理

定义:

实体关系引导推理是通过显式定义实体间的关联规则(如因果关系、时空关联),约束模型的推理方向,解决高复杂度问题的方法。其特点是利用关系网络缩小搜索空间,提升推理效率。

原理:

1)关系建模:定义实体间关系类型(如“导致”“属于”“反对”),构建关系约束矩阵。

2)规则驱动:通过预置逻辑规则(如“若A导致B,则B发生时间晚于A”)限制无效推理分支。

3)动态剪枝:基于关系权重实时淘汰低相关性路径(如供应链中断分析中剔除无关企业节点)

适用场景:

多实体交互的复杂系统:如供应链风险预测、法律案件证据链分析。

• 时序依赖强的问题:例如流行病传播路径推演、历史事件因果关系验证。

示例:

提示词

某企业供应链因台风中断,请基于实体关系分析潜在风险链:
实体:供应商A(芯片)、物流公司B、港口C
关系:A依赖B运输、B使用港口C、台风影响C运营

输出

一级影响:港口C停运→物流公司B无法交货→供应商A库存耗尽(3天内)

二级扩散:

替代路径分析:若B切换至港口D,需评估D容量与海关效率

长尾风险:A客户转单竞品→市场份额永久性流失

决策建议:优先启用应急仓库库存,并与物流公司B协商空运方案。

4.5 集成式提示

1. RAG(检索增强生成)

定义:

RAG(Retrieval-Augmented Generation)是一种通过结合外部知识库检索与生成模型的技术框架,旨在提升生成内容的准确性和可信度。其核心是通过检索实时、动态的外部知识,弥补大模型训练数据局限性和时效性问题。

原理:

1)检索-增强-生成闭环

**• 检索阶段:**利用向量数据库对用户查询进行语义编码,通过相似度匹配从知识库中召回相关文本片段(如文档、图表描述等)。

**• 增强阶段:**将检索结果与原始查询结合,构建包含上下文信息的提示词模板(如“根据以下资料回答:…”)。

**• 生成阶段:**大模型基于增强后的上下文生成答案,并验证答案与检索内容的一致性,减少“幻觉”风险。

3)技术融合

• 结合文本清洗、向量嵌入(Embedding)和索引优化技术提升检索质量;

• 支持动态知识更新,无需重新训练模型即可适配新数据。

适用场景:

•高精度需求场景:法律条文分析、医疗诊断辅助(需引用最新医学指南);

•私有化数据应用:企业内部知识库问答(如财务报告解读);

•实时信息处理:新闻事件摘要生成、股票市场趋势预测。

示例:

提示词

根据公司2024年财报数据,分析新能源汽车业务的市场份额变化趋势。

输出流程

检索:从企业数据库召回2024年销量、竞品分析、行业白皮书等文档;

增强:构建提示词:“根据《2024年新能源汽车市场报告》,Q3特斯拉占比22%…请分析市场份额变化”;

生成:输出结构化分析:“2024年Q3公司新能源车市占率提升至18%(同比+5%),主要得益于东南亚市场扩张,但面临特斯拉价格战的竞争压力。”

2. 多模态提示

定义:

多模态提示是通过融合文本、图像、音频等多种输入形式,引导模型生成跨模态关联内容的技术。其本质是模拟人类多感官协同认知,提升复杂任务的解决能力。

原理:

特征对齐与融合

•跨模态编码:使用CLIP等模型将图像/音频编码为与文本对齐的向量空间;

•联合表示学习:通过注意力机制整合多模态特征(如将产品图与文案关键词关联)。

动态交互机制

• 支持时序对齐(如视频帧与语音解说同步)和空间关联(如图像区域与文本描述映射)。

适用场景:

•创意内容生成:广告文案+配乐建议(如运动鞋宣传片搭配电子音乐);

•工业质检辅助:结合产品缺陷图片生成维修方案文本;

•教育交互:根据历史事件地图生成讲解音频与互动问答。

示例:

提示词

参考这张智能手表产品图(图略),写一段电商文案并建议配乐风格。

输出

1.多模态解析:
- 图像特征:圆形表盘、钛金属表带、健康数据屏显;
- 文本关键词:科技感、运动场景、精准监测。
2.文案生成:
“全新XX智能手表,钛金属机身诠释硬核美学,24小时心率血氧监测精准如医疗级设备。跑步时,实时轨迹映射与配速分析让你掌控每一公里。”
3.配乐建议:
- 风格:电子音乐(科技感)+ 环境音效(森林风声增强户外联想)。

*六、未来提示词工程的核心方向*

1)从“人工设计”到“自动化优化”

• 自动提示工程(APE):利用模型生成候选提示词,并通过A/B测试筛选最优方案(如谷歌OPRO框架提升数学题准确率8.4%);

动态知识注入:结合知识图谱或实时数据库,实现提示词与外部信息的联动更新。

2)跨模态与场景适配

• 多模态提示:融合图像、语音等输入(如“根据产品图写文案并建议配乐”),需设计跨模态对齐机制;

• 行业专用模板:针对电商、法律等场景开发标准化提示库(如跨境文案优化模板)。

总之,提示词是“工具”,提示词工程是“使用工具的方法论”。即使推理型大模型普及,提示词工程仍将作为人机协作的“翻译器”和“效率杠杆”存在,其核心价值从“弥补模型能力短板”转向“释放模型潜力上限”。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于提示词工程的综述 提示词工程Prompt Engineering)近年来成为自然语言处理领域的重要研究方向之一。特别是在大规模预训练模型(LLMs, Large Language Models)兴起之后,如何设计高效的提示词以引导模型生成高质量的结果成为了研究热点。 #### 提示词工程的研究背景 提示词工程的核心在于通过精心设计输入文本的形式来优化大语言模型的表现[^1]。这种技术不仅依赖于模型本身的性能,还高度依赖于提示的设计方式及其与具体应用场景的适配程度。因此,许多学者致力于探索更有效的提示构建方法以及其理论基础。 #### EMNLP会议中的相关工作 作为自然语言处理领域的顶级国际会议之一,EMNLP在其历届会议上发表了大量有关提示词工程的文章。这些文章涵盖了从基本概念到高级应用的各种主题: - **2021年EMNLP** 中的一篇重要论文讨论了零样本学习环境下的提示工程技术,并提出了几种新颖的方法用于改进传统微调策略的效果[^2]。 - 另一篇发表在同一期上的文章则深入探讨了不同类型的提示对于跨语言迁移任务的影响,揭示了一些之前未被注意到的现象。 #### 综述类资源推荐 针对希望全面了解该领域的读者来说,下面几份公开可用的综述材料可能特别有用: 1. 《A Survey on Prompt Learning for Natural Language Processing》这份文档系统总结了当前主流框架下提示学习的主要进展和技术细节。 2. 此外,《The Power of Scale for Parameter-Efficient Prompt Tuning》一文中也提供了关于参数高效型提示调整方面的深刻见解。 以下是实现简单版本提示工程的一个Python代码例子: ```python def generate_prompt(input_text, template="Q: {question}\nA:"): """Generate a prompt based on the given input text and template.""" return template.format(question=input_text) input_example = "What is the capital city of France?" print(generate_prompt(input_example)) ``` 此函数可以根据指定模板自动生成适用于特定场景的查询字符串形式的提示信息。 ### 结论 通过对上述内容的学习可以看出,无论是理论层面还是实践操作上,提示词工程都还有很大的发展空间等待我们去挖掘发现新知。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值