自2023年大模型技术初步切入医疗赛道,短短两年时间业内已有超百款医疗大模型相继落地,从文本、影像到药物研发,全方位覆盖诊疗、科研等医疗相关活动的方方面面。
这是一个技术改变医疗创新的长期过程,随着大模型技术的迭代与行业趋势的变换,关于技术如何改变医疗的思考,也出现了更多不同的答案。
腾讯健康给出的解题思路不止大模型。
如果说底层的大模型所代表的是基座,那么想要AI技术真正融入医疗行业,就要在基座之上搭建起坚实的框架,这正是腾讯健康在做的事情。
在不久前举办的腾讯云AI产业应用峰会上,腾讯健康发布了两项新的成果,其一是一款服务于C端客户的全新AI智能体产品“健康管理助手”,能够帮助用户智能识别潜在健康风险,并制定个性化的健康计划;其二是通过组学平台全面上线自研AI模型仓库,为科研机构提供蛋白质、单细胞、DNA等大模型。
“社会对技术的需求是,有更多的应用、更快地落地。”在AI产业应用峰会上,腾讯健康总裁吴文达表示,将“保持非常理性的态度,围绕真实的需求,把真正能够落地的、有价值的AI做出来”。
(图为腾讯健康总裁吴文达在峰会现场分享)
医疗大模型的四个加速方向
腾讯健康对AI的布局要追溯到2017年,走到第九个年头,当前已经建立起覆盖医疗服务升级、临床决策支持、重症医学、医学检验等诸多领域的庞大生态。
2023年国内大模型行业爆发后,腾讯健康也迅速以通用的混元大模型为底座,打造医疗行业专属的大模型。
医疗大模型发布之际,吴文达曾表示,腾讯健康“更关注如何在真实世界的医疗场景,用起大模型,用好大模型”。
经过一年多的捶打与优化后,腾讯健康布局早已进入新的阶段,吴文达在此次AI产业应用峰会上分享,团队最近的思考是,如何加速大模型的访问,深化AI在医疗中的应用。
他提出了四个“加速”的方向。
在大模型的创新上,不仅在通用层面的混元大模型积极拥抱开源,与DeepSeek“双核组队”,在医疗垂直方向,腾讯健康也使用了超过1000亿个token(模型处理文本或数据的基本单元)对医疗大模型进行训练,以降低通用大模型生成虚假医疗信息的风险。
在大模型之外,腾讯健康还做了诸多工作。
首先在基础设施方面,腾讯在算力平台协同优化方面持续发力,其软硬一体的框架可提升模型响应速度、延时和性价比。在模型训练层面,采用训练和推理一体算力,潮汐调度方案实现算力灵活调度,确保在面对不同规模和复杂度的 AI 任务时,能够快速分配和利用计算资源,提高模型训练和推理的效率,以保障医疗 AI 应用的稳定运行。
其次则是对知识库系列产品进行了升级。腾讯推出了企业级 AI 知识库和个人知识库工具,打破组织内部数据库分离的现状,实现知识共享。医疗机构可以将自身的专业知识、临床经验和数据资料等整合到知识库中,方便医生和研究人员随时查询和调用,提高医疗决策的科学性和准确性。同时,个人用户也可以构建自己的知识库,记录和管理个人健康信息、疾病史等,为健康管理提供参考依据。
在智能体的搭建上,腾讯健康不仅仅发布了面向C端进行健康管理的AI智能体产品“健康管理助手”,更是将腾讯云智能体开发平台全面升级,可构建多种模式模型,配套工具更加完善,首次实现了零代码支持多个转换系统的方式,进一步降低了智能体开发的门槛。
这使得智能体能够更广泛地应用于各行各业,尤其在医疗体系中,为医生、患者和医疗机构提供了更加便捷、高效的智能服务。例如,医生可以利用智能体快速获取患者病历信息、辅助诊断,患者可以通过智能体进行健康咨询、预约挂号等操作,医疗机构则可以利用智能体优化管理流程、提高服务效率。
在当下,腾讯健康的 AI 布局已取得成效。AI导辅诊服务已在全国 34 个省、直辖市、自治区的近 10000 家各级医疗机构应用;腾讯觅影的医疗影像 AI 在全国各地超 500 家医疗机构普及,累计辅助医护为近 1000 万人次患者进行了各类医学检查;腾讯云各类 “开箱即用” 的医疗 AI 解决方案服务超过 1300 家机构,涵盖医院、药械企业、科研院校、医疗科技企业等。
更多的医疗AI应用、更快的落地
回到腾讯健康最初的愿景,“如何在真实世界的医疗场景,用起大模型,用好大模型”。
吴文达在演讲中强调的“理性发展”理念,或将成为破局关键——当AI不再追求替代医生,而是致力于让人人享有精准可及的医疗服务时,技术才能真正释放其人文价值。
吴文达在峰会上更加细致地分解了腾讯健康的三个着力点——服务患者、服务医生、服务产业发展。
在患者端,腾讯致力于优化患者的就医流程,通过在腾讯健康小程序中集成 AI 技术,为患者提供包括健康问答、症状自查、智能导诊等服务,在诊中提升医生问诊效率,诊后提供病情报告解读和智能用药提醒等。
峰会上发布的新智能体“健康管理助手”,以可视化AI智能体的形式,对体检报告、检验报告进行智能解读,分析健康状况,发现潜在风险,并给出针对性健康计划,长期跟踪健康指标变化,成为用户生活习惯的 “行动教练”。
在腾讯健康与北京协和医院的合作中,利用AI大模型对医疗服务进行了全面升级。AI智能问答服务接入了电子发票、报告查询、体检预约等15个患者便捷服务;同时,还AI通过大模型串联起了患者全周期管理,在患者入院建档、术前术后医患沟通、肿瘤患者全周期诊疗等场景提升患者就医体验。
在医生端,腾讯推出了 AI 临床助手,辅助医生进行临床决策,深度思考分析病人病情,列出疑似疾病列表,给出概率和紧急度排序及标签,为诊断依据和治疗方案参考。
医学影像方面,“小觅 AI 助手” 基于觅影快速分析影像报告,自动检索历史报告、比对病情变化,推荐相关检查、解读报告疾病含义,并支持报告错别字检测与一键纠正,提升医生报告书写效率。
在上述与北京协和医院的合作中,腾讯搜狗输入法成为医生的轻量化AI应用平台,接入医院内用药助手、医学综合智能体、会诊建议服务等多种AI大模型智能应用,提升医生临床工作效率。
而在罗湖医疗集团,腾讯健康的AI 临床助手能够为临床医生提供决策支持,涵盖采集病史、疾病预测、推荐诊疗方案、监控用药安全等环节,加强临床诊断风险质控,提升医疗服务质量。
腾讯健康与迈瑞医疗携手开发的全球首个落地临床重症大模型,可在重症病房基于临床数据还原患者画像,快速回溯病情、预测趋势并提供建议,还能生成病历档案及提供高准确率重症知识查询结果。
在服务产业发展方面,腾讯健康在此次峰会上发布了新上线的自研AI模型仓库,为科研机构、基因测序企业提供蛋白质、单细胞、DNA等AI 大模型,助力基因组学和生命科学前沿探索等相关研究。
同时,基于 DeepSeek 和混元双引擎,腾讯健康研发了生信分析 AI 助手,深度融合生物信息学分析工作流开发框架及平台知识库,提供全流程智能辅助。
在落地上,金域医学基于腾讯云算力平台和大模型接入能力,构建和迭代“域见医言” 大模型,开发 “小域医” 智能体应用,为基层医疗和医共体机构提供完善解决方案。
从北京协和医院的AI全周期患者管理,到深圳市罗湖医院集团的“AI临床助手”重塑诊疗流程,再到金域医学推动的基层医疗普惠化,腾讯健康以“患者体验优化、医生效能提升、产业生态激活”为锚点,正在重塑医疗服务的价值链条。
腾讯健康的AI布局,反映了一家科技企业对医疗体系数字化的理解与实践。从最初的医学图像识别,到今天的平台化布局与生态协同,腾讯正在尝试用算法与算力参与构建未来健康系统。
这不仅是技术的进展,更是一场关于如何让AI真正融入医疗本质的深度探索。当技术创新从实验室走向真实医疗场景,需要的不仅是算法迭代,更是对医疗系统运行规律的深刻敬畏。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。