在openpyxl中,主要用到三个概念:Workbooks,Sheets,Cells。
-
Workbook就是一个excel工作表;
-
Sheet是工作表中的一张表页;
-
Cell就是简单的一个格。
openpyxl就是围绕着这三个概念进行的,不管读写都是“三板斧”:打开Workbook,定位Sheet,操作Cell。
官方文档:https://openpyxl.readthedocs.io/en/stable/
官方示例:
from openpyxl import Workbook
wb = Workbook()
# grab the active worksheet
ws = wb.active
# Data can be assigned directly to cells
ws['A1'] = 42
# Rows can also be appended
ws.append([1, 2, 3])
# Python types will automatically be converted
import datetime
ws['A2'] = datetime.datetime.now()
# Save the file
wb.save("sample.xlsx")
5.1 openpyxl 基本操作
1.安装
pip install openpyxl
因为我已经安装,所以提示如下信息:
2.打开文件
(1)新建
from openpyxl import Workbook
# 实例化
wb = Workbook()
# 激活 worksheet
ws = wb.active
(2)打开已有
from openpyxl import load_workbook
wb = load_workbook('文件名称.xlsx')
3.写入数据
# 方式一:数据可以直接分配到单元格中(可以输入公式)
ws['A1'] = 42
# 方式二:可以附加行,从第一列开始附加(从最下方空白处,最左开始)(可以输入多行)
ws.append([1, 2, 3])
# 方式三:Python 类型会被自动转换
ws['A3'] = datetime.datetime.now().strftime("%Y-%m-%d")
4.创建表(sheet)
# 方式一:插入到最后(default)
ws1 = wb.create_sheet("Mysheet")
# 方式二:插入到最开始的位置
ws2 = wb.create_sheet("Mysheet", 0)
5.选择表(sheet)
# sheet 名称可以作为 key 进行索引
>>> ws3 = wb["New Title"]
>>> ws4 = wb.get_sheet_by_name("New Title")
>>> ws is ws3 is ws4
True
6.查看表名(sheet)
# 显示所有表名
>>> print(wb.sheetnames)
['Sheet2', 'New Title', 'Sheet1']
# 遍历所有表
>>> for sheet in wb:
... print(sheet.title)
7.访问单元格(cell)
(1)单个单元格访问
# 方法一
>>> c = ws['A4']
# 方法二:row 行;column 列
>>> d = ws.cell(row=4, column=2, value=10)
# 方法三:只要访问就创建
>>> for i in range(1,101):
... for j in range(1,101):
... ws.cell(row=i, column=j)
(2)多个单元格访问
# 通过切片
>>> cell_range = ws['A1':'C2']
# 通过行(列)
>>> colC = ws['C']
>>> col_range = ws['C:D']
>>> row10 = ws[10]
>>> row_range = ws[5:10]
# 通过指定范围(行 → 行)
>>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2):
... for cell in row:
... print(cell)
<Cell Sheet1.A1>
<Cell Sheet1.B1>
<Cell Sheet1.C1>
<Cell Sheet1.A2>
<Cell Sheet1.B2>
<Cell Sheet1.C2>
# 通过指定范围(列 → 列)
>>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2):
... for cell in row:
... print(cell)
<Cell Sheet1.A1>
<Cell Sheet1.B1>
<Cell Sheet1.C1>
<Cell Sheet1.A2>
<Cell Sheet1.B2>
<Cell Sheet1.C2>
# 遍历所有 方法一
>>> ws = wb.active
>>> ws['C9'] = 'hello world'
>>> tuple(ws.rows)
((<Cell Sheet.A1>, <Cell Sheet.B1>, <Cell Sheet.C1>),
(<Cell Sheet.A2>, <Cell Sheet.B2>, <Cell Sheet.C2>),
...
(<Cell Sheet.A8>, <Cell Sheet.B8>, <Cell Sheet.C8>),
(<Cell Sheet.A9>, <Cell Sheet.B9>, <Cell Sheet.C9>))
# 遍历所有 方法二
>>> tuple(ws.columns)
((<Cell Sheet.A1>,
<Cell Sheet.A2>,
<Cell Sheet.A3>,
...
<Cell Sheet.B7>,
<Cell Sheet.B8>,
<Cell Sheet.B9>),
(<Cell Sheet.C1>,
...
<Cell Sheet.C8>,
<Cell Sheet.C9>))
8.保存数据
wb.save('文件名称.xlsx')
9.其它
(1)改变sheet标签按钮颜色
ws.sheet_properties.tabColor = "1072BA" # 色值为RGB16进制值
(2)获取最大行,最大列
# 获得最大列和最大行
print(sheet.max_row)
print(sheet.max_column)
(3)获取每一行每一列
-
sheet.rows为生成器, 里面是每一行的数据,每一行又由一个tuple包裹。
-
sheet.columns类似,不过里面是每个tuple是每一列的单元格。
# 因为按行,所以返回A1, B1, C1这样的顺序
for row in sheet.rows:
for cell in row:
print(cell.value)
# A1, A2, A3这样的顺序
for column in sheet.columns:
for cell in column:
print(cell.value)
(4)根据数字得到字母,根据字母得到数字
from openpyxl.utils import get_column_letter, column_index_from_string
# 根据列的数字返回字母
print(get_column_letter(2)) # B
# 根据字母返回列的数字
print(column_index_from_string('D')) # 4
(5)删除工作表
# 方式一
wb.remove(sheet)
# 方式二
del wb[sheet]
(6)矩阵置换
rows = [
['Number', 'data1', 'data2'],
[2, 40, 30],
[3, 40, 25],
[4, 50, 30],
[5, 30, 10],
[6, 25, 5],
[7, 50, 10]]
list(zip(*rows))
# out
[('Number', 2, 3, 4, 5, 6, 7),
('data1', 40, 40, 50, 30, 25, 50),
('data2', 30, 25, 30, 10, 5, 10)]
# 注意 方法会舍弃缺少数据的列(行)
rows = [
['Number', 'data1', 'data2'],
[2, 40 ], # 这里少一个数据
[3, 40, 25],
[4, 50, 30],
[5, 30, 10],
[6, 25, 5],
[7, 50, 10],
]
# out
[('Number', 2, 3, 4, 5, 6, 7), ('data1', 40, 40, 50, 30, 25, 50)]
10.设置单元格风格
(1)需要导入的类
from openpyxl.styles import Font, colors, Alignment
(2)字体
- 下面的代码指定了等线24号,加粗斜体,字体颜色红色。直接使用cell的font属性,将Font对象赋值给它。
bold_itatic_24_font = Font(name='等线', size=24, italic=True, color=colors.RED, bold=True)
sheet['A1'].font = bold_itatic_24_font
(3)对齐方式
- 也是直接使用cell的属性aligment,这里指定垂直居中和水平居中。除了center,还可以使用right、left等等参数
# 设置B1中的数据垂直居中和水平居中
sheet['B1'].alignment = Alignment(horizontal='center', vertical='center')
(4)设置行高和列宽
# 第2行行高
sheet.row_dimensions[2].height = 40
# C列列宽
sheet.column_dimensions['C'].width = 30
(5)合并和拆分单元格
- 所谓合并单元格,即以合并区域的左上角的那个单元格为基准,覆盖其他单元格使之称为一个大的单元格。
- 相反,拆分单元格后将这个大单元格的值返回到原来的左上角位置。
# 合并单元格, 往左上角写入数据即可
sheet.merge_cells('B1:G1') # 合并一行中的几个单元格
sheet.merge_cells('A1:C3') # 合并一个矩形区域中的单元格
- 合并后只可以往左上角写入数据,也就是区间中:左边的坐标。
- 如果这些要合并的单元格都有数据,只会保留左上角的数据,其他则丢弃。换句话说若合并前不是在左上角写入数据,合并后单元格中不会有数据。
- 以下是拆分单元格的代码。拆分后,值回到A1位置
sheet.unmerge_cells('A1:C3')
11.示例代码
import datetime
from random import choice
from time import time
from openpyxl import load_workbook
from openpyxl.utils import get_column_letter
# 设置文件 mingc
addr = "openpyxl.xlsx"
# 打开文件
wb = load_workbook(addr)
# 创建一张新表
ws = wb.create_sheet()
# 第一行输入
ws.append(['TIME', 'TITLE', 'A-Z'])
# 输入内容(500行数据)
for i in range(500):
TIME = datetime.datetime.now().strftime("%H:%M:%S")
TITLE = str(time())
A_Z = get_column_letter(choice(range(1, 50)))
ws.append([TIME, TITLE, A_Z])
# 获取最大行
row_max = ws.max_row
# 获取最大列
con_max = ws.max_column
# 把上面写入内容打印在控制台
for j in ws.rows: # we.rows 获取每一行数据
for n in j:
print(n.value, end="\t") # n.value 获取单元格的值
print()
# 保存,save(必须要写文件名(绝对地址)默认 py 同级目录下,只支持 xlsx 格式)
wb.save(addr)
5.2 openpyxl生成2D图表
示例代码:
from openpyxl import Workbook
from openpyxl.chart import BarChart, Series, Reference
wb = Workbook(write_only=True)
ws = wb.create_sheet()
rows = [
('Number', 'Batch 1', 'Batch 2'),
(2, 10, 30),
(3, 40, 60),
(4, 50, 70),
(5, 20, 10),
(6, 10, 40),
(7, 50, 30),
]
for row in rows:
ws.append(row)
chart1 = BarChart()
chart1.type = "col"
chart1.style = 10
chart1.title = "Bar Chart"
chart1.y_axis.title = 'Test number'
chart1.x_axis.title = 'Sample length (mm)'
data = Reference(ws, min_col=2, min_row=1, max_row=7, max_col=3)
cats = Reference(ws, min_col=1, min_row=2, max_row=7)
chart1.add_data(data, titles_from_data=True)
chart1.set_categories(cats)
chart1.shape = 4
ws.add_chart(chart1, "A10")
from copy import deepcopy
chart2 = deepcopy(chart1)
chart2.style = 11
chart2.type = "bar"
chart2.title = "Horizontal Bar Chart"
ws.add_chart(chart2, "G10")
chart3 = deepcopy(chart1)
chart3.type = "col"
chart3.style = 12
chart3.grouping = "stacked"
chart3.overlap = 100
chart3.title = 'Stacked Chart'
ws.add_chart(chart3, "A27")
chart4 = deepcopy(chart1)
chart4.type = "bar"
chart4.style = 13
chart4.grouping = "percentStacked"
chart4.overlap = 100
chart4.title = 'Percent Stacked Chart'
ws.add_chart(chart4, "G27")
wb.save("bar.xlsx")
效果如下:
5.3 openpyxl生成3D图表
示例代码:
from openpyxl import Workbook
from openpyxl.chart import (
Reference,
Series,
BarChart3D,
)
wb = Workbook()
ws = wb.active
rows = [
(None, 2013, 2014),
("Apples", 5, 4),
("Oranges", 6, 2),
("Pears", 8, 3)
]
for row in rows:
ws.append(row)
data = Reference(ws, min_col=2, min_row=1, max_col=3, max_row=4)
titles = Reference(ws, min_col=1, min_row=2, max_row=4)
chart = BarChart3D()
chart.title = "3D Bar Chart"
chart.add_data(data=data, titles_from_data=True)
chart.set_categories(titles)
ws.add_chart(chart, "E5")
wb.save("bar3d.xlsx")
效果如下:
5.4 实战训练
1.openpyxl 新建Excel
程序示例:
# 3.5.2 openpyxl 新建Excel
def fun3_5_2():
wb = Workbook()
# 注意:该函数调用工作表的索引(_active_sheet_index),默认是0。
# 除非你修改了这个值,否则你使用该函数一直是在对第一张工作表进行操作。
ws = wb.active
# 设置sheet名称
ws.title = "New Title"
# 设置sheet颜色
ws.sheet_properties.tabColor = "1072BA"
# 保存表格
wb.save('保存一个新的excel.xlsx')
执行效果:
并对sheet设置了标题和背景颜色:
2.openpyxl 打开已存在Excel
程序示例:
# 3.5.3 openpyxl 打开已存在Excel
def fun3_5_3():
wb = load_workbook("./3_5 openpyxl 修改操作练习.xlsx")
# 注意:该函数调用工作表的索引(_active_sheet_index),默认是0。
# 除非你修改了这个值,否则你使用该函数一直是在对第一张工作表进行操作。
ws = wb.active
# 保存表格
wb.save('copy.xlsx')
效果如下:
3.openpyxl 读写Excel
程序示例:
# 3.5.4 openpyxl 读写Excel
def fun3_5_4():
wb = load_workbook("./3_5 openpyxl 修改操作练习.xlsx")
# 注意:该函数调用工作表的索引(_active_sheet_index),默认是0。
# 除非你修改了这个值,否则你使用该函数一直是在对第一张工作表进行操作。
ws = wb.active
# 读取单元格信息
cellB2_value = ws['B2'].value
print("单元格B2内容为:",cellB2_value)
# 写入单元格
ws['A1'].value = "OPENPYXL"
# 保存表格
wb.save('copy.xlsx')
执行结果:
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(文末获取!)
温馨提示:篇幅有限,已打包文件夹,获取方式在“文末”!!!
二、Python必备开发工具
三、精品Python学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、Python练习题
检查学习结果。
七、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。