蚂蚁开源新RAG框架KAG,可达91%准确率

本文探一探蚂蚁开源的另外一套知识增强生成框架 KAG(Knowledge Augmented Generation),专门用于构建垂直领域知识库的逻辑推理问答框架,论文中提到在电子政务达到了 91.6 的准确率,电子医疗各个问答也有不俗的准确率。

本文会简单的介绍一下 KAG 的概念和构建流程,然后尝试在本地启动 KAG 简单探索一下。
1. KAG 简介

KAG 可以有效克服传统 RAG 向量相似度计算的歧义性和 OpenIE 引入的 GraphRAG 的噪声问题,支持逻辑推理、多跳事实问答等。

OpenIE: 神经开放域信息抽取(Open Information Extraction),也被称为开放信息抽取,是一种从非结构化文本中提取信息的强大技术。 不同于传统的信息抽取方法,OpenIE 不依赖于预定义的领域知识或本体模式,使其具有更广泛的适用性和灵活性。

KAG 的核心功能包括:

  • 知识与 Chunk 互索引结构,以整合更丰富的上下文文本信息

  • 利用概念语义推理进行知识对齐,缓解 OpenIE 引入的噪音问题

  • 支持 Schema-Constraint 知识构建,支持领域专家知识的表示与构建

  • 逻辑符号引导的混合推理与检索,实现逻辑推理和多跳推理问答

我认为 KAG 为何会提到专为垂直领域开发,就在于它采用 Schema 来约束知识图谱的构建。像 GraphRAG 就只能够根据自定义实体进行提取,而 KAG 我粗浅地认为是用户可以自定义知识图谱层次关系,自动进行知识对齐。

2. 核心功能

2.1 LLM 友好的语义化知识管理

私域知识库场景,非结构化数据、结构化信息、业务专家经验 往往三者共存,KAG 提出了一种对大型语言模型(LLM)友好的知识表示框架,基于 DIKW(数据、信息、知识和智慧)的层次结构基础进行融合。这使得它能够在同一知识类型(如实体类型、事件类型)上兼容无 schema 约束的信息提取和有 schema 约束的专业知识构建,并支持图结构与原始文本块之间的互索引表示。

这种互索引表示有助于基于图结构的倒排索引的构建,并促进了逻辑形式的统一表示、推理和检索。同时通过知识理解、语义对齐等进一步降低信息抽取的噪声,提升知识的准确率和一致性。

可以看到数据被分块后,经过信息提取后,形成了对齐的知识。

2.2 逻辑符号引导的混合推理引擎

KAG 提出了一种逻辑符号引导的混合求解和推理引擎。该引擎包括三种类型的运算符:规划、推理和检索,将自然语言问题转化为结合语言和符号的问题求解过程。在这个过程中,每一步都可以利用不同的运算符,如精确匹配检索、文本检索、数值计算或语义推理,从而实现四种不同问题求解过程的集成:图谱推理、逻辑计算、Chunk 检索和 LLM 推理。如下图右侧所示。

从图上就能看出,问题经过规划生成了逻辑形式的推理步骤,然后检索最终汇总各个子问题的检索结果,最终生成。我们稍后在代码中就能看到问题是如何规划。

3. 安装

KAG 开源地址:

  • https://github.com/OpenSPG/KAG

其整体代码结构分为 Builder 和 Solver,顾名思义前者表示构建器,后者表示解决器,具体的构建流程或者索引流程就不再赘述了,前文中的图大概已经能够解释。

其实还有一个kag-model,但由于没开源,这里就忽略了。

3.1 简单安装

简单安装就是按照如下方式通过 Docker Compose 直接启动所有服务,它安装了以下 3 个服务

  • openspg-server

  • openspg-neo4j

  • mysql

curl -sSL https://raw.githubusercontent.com/OpenSPG/openspg/refs/heads/master/dev/release/docker-compose.yml -o docker-compose.yml   docker compose -f docker-compose.yml up -d   

然后打开网页http://localhost:8887,可以参考官方文档https://openspg.yuque.com/ndx6g9/0.5/nbb1bn3wegwue6yo#R4iWY创建知识库。

你大概需要配置以下几项。

但我配置好了之后,在索引的时候会一直会报向量批处理超过默认的 64,用的免费的硅基流动 Embedding,看起来是 Docker 默认配置的 Emebdding Batch 过大了,而配置中无法修改 batch size。只能转向开发者模式。

3.2 开发者模式

即使是开发者模型,也仍然需要安装刚才的 Docker Compose,其中启动了一些依赖服务,KAG 框架并不包含前端或者服务端的代码。

  • 创建虚拟环境

conda create -n kag-demo python=3.10 && conda activate kag-demo

  • 克隆代码

git clone https://github.com/OpenSPG/KAG.git

  • 安装依赖
cd ./KAG && pip install -e .   
  • 验证
knext --version   
  • 创建 Demo
cd kag/examples   vim ./example.cfg   

然后编辑该文件,写入自己的 API KEY。

[project]   namespace = KagDemo   host_addr = http://localhost:8887   id = 1      [vectorizer]   vectorizer = kag.common.vectorizer.OpenAIVectorizer   model = BAAI/bge-m3   api_key = xxxx   base_url = https://api.siliconflow.cn/v1   vector_dimensions = 1024      [llm]   client_type = maas   base_url = https://open.bigmodel.cn/api/paas/v4   api_key = xxxx   model = glm-4-flash      [prompt]   biz_scene = default   language = en      [log]   level = INFO   

使用如下命令创建项目,它会在 kag/examples 下创建 KagDemo 这个项目,并且初始化了一整套代码,但距离使用我们需要给数据,并且改写两个文件。

knext project create --config_path ./example.cfg   
  • 导入要索引的文件

我们导入四篇论文 graphrag.pdf、hipporag.pdf、hybridrag.pdf 和 lightrag.pdf 到 kag/examples/KagDemo/builder/data 下。

  • 提交 Schema 到服务端

这个应该是用来自定义实体类型约束,这里我们暂不定义,走无 Schema 约束。需要回到目录 KagDemo 中执行如下命令。

knext schema commit

  • 编写 Builder 客户端代码

我们需要参考官方文档索引[1]如何调用 SDK 编写 builder,写好的文件需要放置在 KagDemo/builder/indexer.py,最后执行python ./builder/indexer.py即可,它会启动构建。

  • 编写 Solver 客户端代码

我们同样需要参考官方文档 Solver[2]编写 Solver,然后执行python ./solver/evalForKagDemo.py

4. 测试

我们测试问题如下,是一个需要大模型获取两个知识,然后才能总结出答案。经过了大约 42 秒,一次性输出所有答案。

那么为何这么慢呢?按照 1.2 节所述,他需要先规划问题生成逻辑形式推导,之后再推理检索生成。所以他是需要等待第一轮 LLM 规划生成后,才能去检索然后输出。我们看一下它的推理过程,非常的有意思的。

这个推理过程似乎并不是每次都能生成,依赖 LLM 本身的能力,可能和我使用的免费 glm-4-flash 测试有关系。

根据源码所示,它采用的是 CoA(Chain of Abstraction)抽象推理链来生成问题推导步骤。CoA 来自于论文Efficient Tool Use with Chain-of-Abstraction Reasoning[3]。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### RAG框架概念 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了传统信息检索技术和现代自然语言处理中的生成模型的方法。这种方法允许机器学习系统不仅依赖于训练数据内部的知识,还能动态访问外部知识源,在面对问题时获取最、最准确的信息[^4]。 RAG 技术特别适用于那些需要持续更或扩展背景资料的任务场景,比如问答系统、对话代理以及文档摘要等应用。通过引入外部资源作为补充材料,可以有效地减少由纯神经网络预测带来的不确定性——即所谓的“幻觉”现象,从而提高输出内容的真实性和可靠性。 ### 开源实现汇总 #### 1. **RAGFlow** 作为一个兴的开源项目,RAGFlow 致力于简化基于 RAG 架构的应用开发过程。此工具包提供了多个预先配置好的模块和支持自动化的工作流设计,使得开发者能够更便捷地集成各种类型的数据库和服务接口,进而加速原型搭建和技术验证的速度[^2]。 - 显著特性: - 提供了一套完整的预构建组件; - 支持多种主流的数据存储方案; - 集成了先进的索引机制以优化查询效率; ```python from ragflow import PipelineBuilder pipeline = PipelineBuilder().add_retriever('elasticsearch').add_generator('transformers') ``` #### 2. **基于ChatGLM 和LangChain 实现的大规模离线部署方案** 这类解决方案专注于为企业级用户提供安全可控且高效的本地化部署选项。借助强大的中文理解能力(如 ChatGLM),再加上灵活易用的应用编程接口(APIs),这套组合拳可以在不连接互联网的情况下完成复杂的语义理解和响应生成任务[^3]。 ```bash git clone https://github.com/your-repo/chatglm-langchain.git cd chatglm-langchain pip install -r requirements.txt python app.py ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值