本地CPU上运行LLM,1毛钱都不想多花

如果你和我一样,最近一直在做Agent试探,就会对第三方大模型非常纠结,随着调用次数的增加,银子也是白花花的流淌,有没有省钱的办法呢?当然有,就是在CPU上跑大模型。

一般的GPU服务器,一个月下来起码也要2000左右,算下来,不如调第三方服务的API划算,但是调第三方服务存在着数据泄露风险,而且随着用户增长,按tokens计价的方式,也会消耗如流水,内心滴血。一群大佬找到了省钱的办法,就是让大模型在AMD的GPU,甚至在CPU上跑。如果在CPU上跑,我们只需要租一台核心过得去内存比较大的服务器即可,每个月的价格瞬间降到几百块,甚至打折时期,花千把来块就可以租一年。本文主要来聊一聊,如何让LLM运行在CPU上,以极限姿势压榨服务器,达到省钱目的。不是GPU不够好,而是CPU性价比更高。

想要让LLM在CPU上运行,核心要做到两个点:

  • 高效的CPU运算架构

  • 对大模型的性能压榨

只要做到这两点,再配合一台硬件上还不错的普通CPU服务器,就可以让我们获得一个性价比最大化的本地大模型服务。

针对第一点,社区大佬Georgi Gerganov想到了用c/c++重新实现模型框架,在想到这个点子后,经过一个晚上的奋战之后,他推出了llama.cpp项目。

在这里插入图片描述
该项目主要用于运行大模型,完成推理过程。使用c/c++的优势在于:

  • 无需任何额外依赖,相比 Python 代码对 PyTorch 等库的要求,C/C++ 直接编译出可执行文件,跳过不同硬件的繁杂准备;

  • 支持 Apple Silicon 芯片的 ARM NEON 加速,x86 平台则以 AVX2 替代;

  • 具有 F16 和 F32 的混合精度;

  • 支持 4-bit 量化;

  • 无需 GPU,可只用 CPU 运行;

由于纯 C/C++ 实现,无其他依赖,运行效率很高,除 MacBook Pro 外,甚至可以在 Android 上运行。

针对第二点,如何将动则上100B的大模型进行压缩,以可以让普通的CPU机器也可以带得动呢?答案是通过“量化”。所谓量化,学术的说是“将连续取值的浮点型模型权重进行裁剪和取舍的技术”,简单讲就是压缩,丢失部分精度,换取空间和性能。Georgi Gerganov提出了自己的量化方案ggml,并在该量化方案被广泛认可后,ggml成为一种量化模型的文件格式。但是,大模型领域发展的太快了,ggml很快跟不上步伐,于是在2023年8月他又推出了改进方案gguf,该方案替代ggml成为最新的量化模型文件格式。而且,目前HuggingFace也大力支持了该格式。当然,除了gguf方案外,还有其他量化方案,例如知名的GPTQ等。总之,经过量化后的模型,可以提升性能,降低对硬件资源的要求。

现在,我们有了llama.cpp和gguf,我们就可以在CPU机器上跑大模型了。

不过先不要着急,我们还有杀手锏。虽然llama.cpp是可以直接运行,可是它的运行方式有点不那么感冒。毕竟现在很少有人在用c++写业务系统了,所以,我们最好还是能跟我们的应用结合起来便是最好。这里有两种方案:

  • 独立服务,通过RPC或http进行调用

  • 编译为业务系统开发语言支持的模块,直接在代码中调用

第一种方案,可以使用llama.cpp项目中提供的轻量http服务,或者第三方的docker来起服务,起来之后,就可以通过http api来调用大模型;第二种方案,社区非常多的牛人提供了不同语言的模块,可以在llama.cpp项目首页看到这些项目,你只要找到自己业务系统编程语言对应的模块,安装到自己的系统中,就可以像调用一个第三方库一样调用大模型。另外,如果想快速体验,还可以通过一个知名的项目ollama,一键安装和启动大模型。

在这里插入图片描述
独立服务模式

在这里插入图片描述
模块封装模式

作为前端开发,我也在前人的肩膀上封装了一个库node-llm,你可以使用 npm install node-llm 来安装它。它简化了接口,理解成本极低,可以让前端开发的同学,以最快的速度在nodejs上启动一个大模型项目。有了它,再配合langchain的js版本,就可以轻松搭建自己的知识库等Agent应用。而且我还融合了之前做的chatglmjs项目,在llama之外,支持chatglm系列模型,chatglm的6b模型要求的性能在同级别中最低,非常值得一试。通过这种模块化设计,我们甚至可以把一些体积小的大模型直接作为软件的一部分,在软件安装时就作为软件本身的内置功能。如果你使用electron来开发桌面应用,你甚至可以在应用中使用 node-llm 并下载好gguf后,打包成一个软件提供给你的客户。当然,如果你是做MacOS的应用开发,也可以直接使用c++代码进行调整后内置到软件中。总之,llama.cpp这个项目,给我们带来了更大的想象空间。

量化后的模型对硬件的要求降低,但是并不意味着随便一台垃圾机器也可以跑起来,如果我们有一台8G内存的大模型,我们可以尝试6B的量化模型。当然,如果我们有需要,可以升级机器到32G,此时,我们就可以把量化的精度提高一些,以获得效果更好的输出。如果我们只有2G内存,还是建议调第三方接口来的实在。

最后,有人会问,失去精度后,大模型准确性降低,不就失去了意义吗?对于这个问题,我想说的是,我们应该根据自己的需求来选择,不然为什么所有厂商都会提供不同参数量级的模型呢?说明这些厂商们明白,我们在面对不同需求时,所需要的精度是不同的。对于我们做应用开发而言,我们要学会用架构拆分来合理降低成本。当我们一股脑的把所有LLM处理都丢给一个大模型去处理,意味着该模型要承受巨大的服务压力,同时,你的成本也是固定的。但当我们把不同的处理进行拆分,精度必须高的,分发给智能程度高精度高的大模型去处理,精度要求低的,分发给我们今天搭起来的CPU上跑的大模型去处理,如此合理分配,就可以让我们的成本降低。

对于我们学习、调试期间而言,本着能省则省的性价比观念,自己搭一个本地大模型服务,调通整个Agent之后,再把部分调用切换到付费大模型去,如此,岂不省了很多?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值