一、企业数字化模型
数字化模型是一种将企业运营的各个方面转化为数字信息和流程的框架,它通过集成信息技术、数据分析和自动化工具,优化企业的决策过程、提高效率、降低成本,并增强企业的竞争力。这种模型涵盖了从战略规划到日常操作的各个层面,包括但不限于经营模型、管理模型、工厂模型、价值模型、流程模型、精益模型、柔性模型、财务模型等,旨在构建一个全面、高效、透明的企业管理和运营环境。
二、企业管理模型核心应用
数字化转型是企业通过采用数字技术来彻底改变其业务模式和流程的过程。核心模型在数字化转型中扮演着重要角色,因为它们提供了一种结构化的方法来理解和改进企业的各个方面。以下是核心模型在数字化转型中的作用以及一个实际应用案例:
核心模型在数字化转型中的作用:
-
战略模型:确定企业的长期目标和方向,以及如何利用数字化技术来实现这些目标。
-
经营模型:优化企业的市场定位和客户关系管理,通过数据分析来提高市场响应速度和客户满意度。
-
管理模型:改进内部管理流程,包括人力资源管理、财务管理和供应链管理,以提高效率和透明度。
-
工厂模型:在生产和制造过程中引入自动化和智能化技术,提高生产效率和产品质量。
-
价值模型:识别和优化企业的价值链,确保每个环节都能为客户和企业创造价值。
-
流程模型:标准化和自动化业务流程,减少浪费,提高流程效率。
-
精益模型:采用精益生产原则来消除浪费,提高生产效率和降低成本。
-
柔性模型:提高企业对市场变化的适应能力,通过灵活的资源配置和流程调整来快速响应需求变化。
-
财务模型:利用数字化工具来优化财务管理,提高资金使用效率和风险控制能力。
实际应用案例:
案例企业:某大型制造企业
转型前状况:传统的生产管理方式,数据孤岛现象严重,生产效率不高,市场响应慢。
数字化转型策略:
-
战略模型:确定数字化转型为企业发展的核心战略,设定智能化生产和个性化定制产品为目标。
-
经营模型:通过CRM系统收集和分析客户数据,实现精准营销和个性化服务。
-
管理模型:引入ERP系统,整合财务、人力资源、供应链等管理流程,提高决策效率。
-
工厂模型:部署MES系统,实现生产过程的实时监控和智能调度。
-
价值模型:通过数据分析,优化产品设计和生产流程,提高产品附加值。
-
流程模型:标准化生产流程,减少不必要的步骤,提高生产效率。
-
精益模型:采用精益生产方法,持续改进生产流程,减少浪费。
-
柔性模型:引入模块化设计和生产,提高生产线的灵活性,快速适应市场变化。
-
财务模型:利用财务分析工具,优化资金流和成本结构,提高财务透明度。
转型结果:企业生产效率提高30%,市场响应速度加快,客户满意度提升,整体竞争力显著增强。
通过这个案例,我们可以看到核心模型在数字化转型中的重要性,它们帮助企业系统地识别改进点,实施有效的转型策略,并最终实现业务的优化和升级。
三、解决方案
PPT共56页,篇幅有限只展示部分。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。