大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:
1、小模型的春天来了?未来AI或将"大小通吃"
2、让GPT等大模型"减重"90%,依然能准确理解你想搜什么
1、小模型的春天来了?未来AI或将"大小通吃"
随着ChatGPT等大语言模型的崛起,一个有趣的现象正在AI领域发生:体型"娇小"的小语言模型(SLM)正悄然走红。在Hugging Face社区,这些"小个子"模型的下载量竟然超过了它们的"大块头"兄弟,这是为什么呢?
答案很简单:大模型虽然能力强,但"胃口"也大。以Llama 3.1(405B)为例,光是存储就需要202.5GB显存,在手机上运行100个token需要84秒,这对于很多实际应用场景来说简直是"太重"了。相比之下,小语言模型就像"轻量级拳手",虽然参数量不到10亿,但在特定领域的表现可以与大模型相媲美。
更妙的是,小语言模型还有几个独特优势:首先,它能在本地设备上运行,既保护隐私又避免网络延迟;其次,训练和调整成本低,特别适合针对特定领域进行优化;最后,它的响应速度快,非常适合需要实时反应的应用场景。
近期研究表明,通过量化训练、知识蒸馏等技术优化,小语言模型的能力还可以进一步提升。一些研究甚至探索了让大小模型协同工作的方案,这意味着未来的AI世界可能不是"非大即小",而是"大小通吃",让每个场景都能找到最合适的解决方案。
论文标题:A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness
论文链接:https://arxiv.org/abs/2411.03350
2、让GPT等大模型"减重"90%,依然能准确理解你想搜什么
人工智能领域又有重大突破!研究人员成功将GPT这样的大语言模型"浓缩"成BERT这样的小模型,让搜索引擎既能保持智能,又能大幅降低成本。这项技术已经在2024年2月成功应用到了某商业搜索引擎中。
想象一下,现在的搜索引擎就像一个"资深导购",需要在茫茫商品中帮你找到最合适的那个。GPT等大语言模型虽然"智商"很高,能准确理解用户需求,但"体型"太大,"消耗"太多,不适合直接用在搜索引擎中。研究人员通过一种叫做"DisRanker"的技术,成功将大模型的"智慧"转移到了更"苗条"的BERT模型中。
这个过程就像是"高手带徒弟":首先让大模型通过分析用户的点击行为来学习搜索专业知识,然后再用特殊的训练方法,让小模型BERT"复制"大模型的排序能力。最妙的是,研究人员采用了"双保险"的训练方案,不仅让小模型学习具体的打分标准,还特别注重保持不同搜索结果之间的相对排名关系,确保转移后的效果依然出色。
这项技术的成功,不仅让搜索引擎变得更聪明,还大大降低了运营成本。更重要的是,它为人工智能技术的实际应用开辟了新思路:通过"化繁为简",让强大但笨重的AI技术变得更实用、更普及。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。