沙利文最近发布了《2024 年全球 AI 生态全景概览》对全球 AI 生态进行了全面分析,核心内容如下:
一、 AI发展新阶段特点
1、开拓与突破-引领智能革新
报告指出,AI 正步入一个崭新的阶段,生成式 AI 及大模型应用推动其从“认知”向“生成”的飞跃性转变。而这一转变,不仅拓宽了应用范畴,加速全球数字化与智能化进程,如在内容生成、个性化交互等领域发挥作用,更加速了全球数字化与智能化进程,助力了产业全面升级。
2、市场增长机遇
全球 AI 市场增长强劲,预计 2027 年人工智能市场规模超 11 万亿美元,而生成式 AI 是核心增长引擎。尤其在中国,AI 市场发展迅速,其在金融、医疗、制造等领域的应用革新将推动全球市场发展。
3、技术进步与商业变革
生成式 AI 技术成熟度提升,带来新商业模式和经济增长点。未来 AI 在成本优化和商业部署上潜力巨大,到 2045 年技术深度优化、商业化加速,2070 年可能出现“普适AI”,开启新一轮技术变革。
二、市场概况与关键发现
1、全球 AI 生态全景概览
根据报告中的全球 AI 生态全景概览图,我们发现,全球范围内,对于 AI 发展贡献最大的公司,包括被称为 AI 本土巨人的是首屈一指的 OpenAI、Google 以及百度,而他们的大模型等人工智能技术已然遥遥领先于同国家内的其他任何公司。
图中,对于芯片、云、开源、初创公司、应用终端等领域也都列出来了比较具有代表性的公司,包括 IBM、阿里、苹果、联想等知名企业。
2、全球 AI 生态趋势分析
-
全球人工智能市场增长及关键里程碑:2019 - 2027 年全球AI市场大幅增长,到 2027年市场规模将超过 11万亿美元。主要里程碑包括 OpenAI 的 GPT、Stable Diffusion 等技术推动自然语言处理、图像生成等应用发展。
-
中国在全球 AI 市场中的份额不断上升:预计到 2027 年,中国AI 在全球 AI 市场价值中的贡献将稳步增长,有望达到 39%-45%。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。