最近,AI 编程工具非常火爆,从 Cursor、V0、Bolt.new 再到最近的 Windsurf。
本篇我们先来聊聊开源方案-Bolt.new,产品上线四周,收入就高达400万美元。
无奈该网站国内访问速度受限,且免费 Token 额度有限。
怎么在本地运行,让更多人用上,加速AI落地,是猴哥的使命。
今日分享,带大家用本地 Ollama 部署的大模型,驱动 bolt.new,实现 AI 编程的 Token 自由。
1. Bolt.new 简介
Bolt.new 是基于SaaS的AI编码平台,底层是由 LLM 驱动的智能体,结合WebContainers 技术,在浏览器内即可实现编码和运行,其优势有:
-
支持前后端同时开发;
-
项目文件夹结构可视化;
-
环境自托管,自动安装依赖(如 Vite、Next.js 等);
-
运行 Node.js 服务器,从部署到生产
Bolt.new的目标是,让更多人都能完成 web应用开发,即便是编程小白,也能通过简单的自然语言实现创意。
官方已将项目开源:https://github.com/stackblitz/bolt.new
不过,官方开源的 bolt.new 支持模型有限,国内很多小伙伴都无法调用海外的 LLM API。
社区有大神二开了 bolt.new-any-llm,可支持本地 Ollama 模型,下面带大家实操一番。
2. Qwen2.5-Code 本地部署
前段时间,阿里开源了 Qwen2.5-Coder 系列模型,其中 32B 模型在十余项基准评测中均取得开源最佳成绩。
无愧全球最强开源代码模型,在多项关键能力上甚至超越 GPT-4o。
Ollama 模型仓库也已上线 qwen2.5-coder:
Ollama 是一款小白友好的大模型部署工具
2.1 模型下载
关于下载多大的模型,可根据自己的显存进行选择,32B 模型至少确保 24G 显存。
下面我们以 7b 模型进行演示:
ollama pull qwen2.5-coder
2.2 模型修改
由于 Ollama 的默认最大输出为 4096 个token,对于代码生成任务而言,显然是不够的。
为此,需要修改模型参数,增加上下文 Token 数量。
首先,新建 Modelfile 文件,然后填入:
FROM qwen2.5-coder PARAMETER num_ctx 32768
然后,开始模型转换:
ollama create -f Modelfile qwen2.5-coder-extra-ctx
转换成功后,再次查看模型列表:
2.3 模型运行
最后,在服务端检查一下,看模型能否被成功调用:
def test_ollama(): url = 'http://localhost:3002/api/chat' data = { "model": "qwen2.5-coder-extra-ctx", "messages": [ { "role": "user", "content": '你好'} ], "stream": False } response = requests.post(url, json=data) if response.status_code == 200: text = response.json()['message']['content'] print(text) else: print(f'{response.status_code},失败')
如果没什么问题,就可以在 bolt.new 中调用了。
3. Bolt.new 本地运行
3.1 本地部署
step1: 下载支持本地模型的 bolt.new-any-llm:
git clone https://github.com/coleam00/bolt.new-any-llm
step2: 复制一份环境变量:
cp .env.example .env
step3: 修改环境变量,将OLLAMA_API_BASE_URL
替换成自己的:
# You only need this environment variable set if you want to use oLLAMA models # EXAMPLE http://localhost:11434 OLLAMA_API_BASE_URL=http://localhost:3002
step4: 安装依赖(需本地已安装好 node)
sudo npm install -g pnpm # pnpm需要全局安装 pnpm install
step5: 一键运行
pnpm run dev
看到如下输出,说明启动成功:
➜ Local: http://localhost:5173/ ➜ Network: use --host to expose ➜ press h + enter to show help
3.2 效果展示
浏览器中打开http://localhost:5173/
,选择 Ollama 类型模型:
注意:首次加载,如果没拉取到 Ollama 中的模型,多刷新几次看看看。
来实测一番~
写一个网页端贪吃蛇游戏
左侧是流程执行
区域,右侧是代码编辑
区域,下方是终端
区域。写代码、安装依赖、终端命令,全部由 AI 帮你搞定!
如果遇到报错,直接把报错丢给它,再次执行,如果没什么问题,右侧Preview
页面就可以成功打开。
注:由于示例中用的 7b 小模型,有需要的朋友可以尝试用 32b 模型,效果会有显著提升。
写在最后
本文带大家在本地部署了 qwen2.5-code 模型,并成功驱动 AI 编程工具 bolt.new。
用它来开发前端项目还是相当给力的,当然,要想用好它,懂点基本的前后端概念,会事半功倍。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。