云桌面 + Excel + AI Agent:打造安全的AI智能体

金融圈人士对 Excel 的依赖毋庸置疑,但如何保护机密文件的所有权并实现智能化操作?本文将介绍云桌面如何作为安全载体保障 Excel 文件,结合 Dify 和 AI,通过 Xlwings 与 Excel 的交互,将表格升级为 RAG 知识库,让AI在熟悉的 Excel 环境中释放更多潜能!

金融行业的 Excel 挑战:如何在安全与智能中找到平衡?

在金融行业,Excel 是核心生产力工具,无论是复杂的财务模型、业务计算逻辑,还是日报、报表生成,都离不开它。但这种便利的背后也潜藏风险:

  • 文件所有权风险:当 Excel 文件存储在个人电脑或传递到第三方时,文件的实际所有权难以掌控,敏感业务逻辑容易被窃取或外泄。

  • 业务逻辑的封闭性:虽然 Excel 内置了丰富的业务计算逻辑,但这些逻辑相对“孤立”,难以直接赋能其他系统或 AI 工具。

  • 智能化需求的落后:Excel 虽然强大,但要让它实现智能化操作(如自动分析、自然语言交互),却对大多数非技术人士来说是高门槛。

面对这些挑战,如何既保障 Excel 文件和其内置逻辑的安全性,又能让 AI 赋能智能操作?答案在于以下解决方案:云桌面+Excel+Xlwings+Dify+AI Agent的深度结合。

技术方案:打造安全、高效、智能的 Excel 操作平台

1. 文件所有权风险:当 Excel 文件存储在个人电脑或传递到第三方时,文件的实际所有权难以掌控,敏感业务逻辑容易被窃取或外泄。

2. 业务逻辑的封闭性:虽然 Excel 内置了丰富的业务计算逻辑,但这些逻辑相对“孤立”,难以直接赋能其他系统或 AI 工具。

3. 智能化需求的落后:Excel 虽然强大,但要让它实现智能化操作(如自动分析、自然语言交互),却对大多数非技术人士来说是高门槛。

1. 云桌面:为 Excel 提供安全载体,保障文件所有权

云桌面是一种基于虚拟化技术的远程操作环境,它可以成为 Excel 的“专属安全载体”。通过云桌面,企业可以将所有Excel文件托管在云端,从根本上解决文件所有权和安全问题。

云桌面的优势在金融场景中的应用:

  • 数据所有权保障:Excel文件只存在于云端,用户通过远程访问进行操作,文件不落地,从而避免被复制或窃取。

  • 操作权限管理:管理员可以细化到用户级的权限设定,如仅允许查看文件、禁止下载或打印。

  • 敏感日志追踪:每一项操作都能被完整记录,为安全审计提供依据

云桌面的安全特性让它成为Excel的最佳运行环境,避免了传统本地化操作带来的数据泄露风险。

2. Excel 与 Xlwings:将表格升级为 RAG 知识库

Excel在金融行业被广泛应用,不仅仅因为它的灵活性,还因为它是一个“半结构化的业务知识库”,尤其是其中的内置公式、业务逻辑和表格数据,承载着企业核心的运营知识。

通过 Xlwings 与 Excel 的结合,可以将其升级为 RAG(Retrieval-Augmented Generation,检索增强生成)知识库,供 AI 高效调用:

  • 业务逻辑的实时调用:Xlwings 允许 AI Agent 直接连接到 Excel 文件,并以代码方式调用其中的内置公式或业务模型。例如,一个 Excel 表中的定价逻辑,AI 可以通过 Xlwings 进行操作与计算,无需将其外部复制到其他系统。

  • 智能检索与生成:Excel 中的数据和计算逻辑可被 AI 理解并利用。例如,AI 可以通过检索历史交易记录并结合公式,生成预测分析报告。

  • 数据与知识的双重应用:通过 Xlwings,Excel 不仅是一组数据文件,更是动态的知识库,所有业务逻辑都可以被动态调用和扩展。

案例场景:某供应链金融公司内部的 Excel 文件中保存了复杂的报价逻辑,借助 Xlwings,AI 可以调用Excel 中的逻辑来完成对供应商的融资报价。这样,无论是内部的销售,还是外部的客户,都可以直接通过聊天工具和一个AI Agent来跟一个"加密"的Excel来进行对话了。

3. Dify 和 AI Agent:让 Excel 逻辑智能化,解放用户生产力

Dify 作为一个定制化 AI 开发平台,可以帮助企业快速部署智能 AI Agent,并通过 Xlwings 与 Excel 深度集成。结合这套工具,AI Agent 可以让 Excel 实现更多智能化功能:

  • 通过自然语言操作Excel:利用 Dify 开发的AI Agent,用户可以通过语音或自然语言指令,让 AI 直接完成 Excel 的常规操作。例如,“筛选过去一年的高风险投资记录”或“更新利润率计算逻辑”。

  • 智能分析与洞察:AI Agent 通过 Dify 与 Excel 结合后,可以快速分析海量数据并生成自动化的洞察结果,比如生成财务预测、优化策略建议等。

  • 动态扩展Excel能力:AI 可以动态地调用 Excel 知识库(表格数据+业务逻辑),完成如跨表格的数据汇总、实时风险评估等复杂操作。

金融场景的应用价值:

1. 保护机密数据,掌控文件所有权

云桌面环境下,Excel文件的所有权始终掌握在企业手中,杜绝了因文件传递导致的数据泄露问题。同时,通过权限设置和操作日志追踪,确保用户的每一步操作都处于监控之下。

2. 将Excel升级为“动态知识库”

金融行业的业务逻辑往往封装在复杂的Excel公式中。通过Xlwings,企业可以将这些业务逻辑提取并供AI调用,从而赋予表格“知识库”属性,成为企业的动态知识资产。

3. 智能化工作流,提升生产力

通过Dify和AI Agent,用户可以在无需掌握任何编程知识的情况下,利用自然语言指令完成原本耗时耗力的操作,彻底解放生产力。

4. 强化合规与安全性

云桌面提供的数据隔离与审计功能,结合Dify与AI Agent的动态生成能力,可以帮助金融企业更好地应对行业合规和数据保护的挑战。

常见问题 (FAQs)

1. 为什么要将Excel文件运行在云桌面上?

云桌面提供了完全隔离的运行环境,保证文件不被下载到本地,保护文件的所有权并减少泄露风险。

2. AI Agent 如何理解 Excel 中的复杂逻辑?

通过 Xlwings,AI 可以直接调用 Excel 内置的公式和模型,而无需重新开发业务逻辑,保证了 AI 对 Excel 逻辑的“无缝理解”。

3. 我需要技术团队来支持这套方案吗?

云桌面和 Xlwings 的基础搭建可能需要一定的技术支持,但通过 Dify 平台,AI 功能的开发和部署非常简单,无需大型技术团队即可完成。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### dify 知识库文本案例 在构建公司内部的知识库时,可以利用dify平台来实现高效管理和应用。对于文本类型的资料管理,通过上传特定的文本文件到dify系统中,能够自动生成相应的知识库结构并提供查询服务[^2]。 例如,在实际操作过程中,如果希望创建一个有关常见问题解答(FAQ)的知识库,则只需准备一份名为`QA文档.txt`的纯文本文件,并将其上传至dify平台。一旦完成上传动作,该平台便会立即处理这份文件的内容: - 自动生成默认的知识库名称; - 提取文件中的重要信息作为知识库描述; - 将其中的问题与答案配对存储起来以便后续检索使用; 为了进一步提升搜索效率和准确性,还可以借助于预先训练好的嵌入式模型(Embedding Model),如Xinference所提供的解决方案,用于将文本数据转化为数值化的特征表示形式——即向量空间内的坐标点。这种做法有助于更精准地匹配用户提出的自然语言请求与其对应的已知知识点之间的关系[^1]。 此外,当涉及到更为复杂的场景比如财务票据识别时,采用专门针对此类任务优化过的大型预训练模型(Large Pre-trained Models, LPMs),像Qwen/Qwen2-VL-72B-Instruct这样的多模态模型可以在OCR光学字符识别方面达到极高的精度水平几乎接近百分之百正确率[^3]。 ```python # 示例代码片段展示如何初始化embedding模型并与dify集成 from Xinference import EmbeddingModel def initialize_embedding_model(): model = EmbeddingModel() return model embedding_model = initialize_embedding_model() # 假设我们有一个函数用来上传文本文件并获取返回的结果对象result_object uploaded_file_result = upload_text_file_to_dify("path/to/your/QA_document.txt") knowledge_base_id = uploaded_file_result['default_knowledgebase']['id'] print(f"新建立的知识库ID为:{knowledge_base_id}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值