ChatBI最佳技术路线:“大模型+数据分析”深度报告解析

数据分析能够将海量的数字信息转化为洞察力和行动力,帮助企业在日益激烈的市场竞争中做出精准决策,优化运营效率,提升客户体验,并发掘新的增长点。在过去二十年里,企业越来越多的依赖于数据驱动的决策,也一直在努力降低数据分析产品的使用门槛,使越来越广泛的用户获得以前只有数据分析师和数据科学家才具备的能力。

从发展阶段上看,数据分析产品经历了从报表式分析到自助式分析的演进,并在大模型技术的推动下,正式进入智能化分析阶段。

在“大模型+数据分析”应用的初期阶段,企业尝试直接利用大模型与企业数据对话,但即使是OpenAI的大模型在text2SQL上的准确率也勉强到80%,无法进入生产领域。

为了提高准确率,业界进行了大量探索,当前“大模型+数据分析”逐渐发展出两种主要的技术路线,一种是以BI平台为核心,另一种是以指标平台为核心。

企业在实践中根据自己的数据基础设施现状、技术能力等实际情况采取不同的技术路线。由于大部分企业过去都建设了BI平台,因此**以BI平台为核心的技术路线占比较大,且企业通常希望将大模型能力“无感”融合到原有BI平台中,避免独立增加页面。**一些在指标平台建设方面领先的企业如快手、滴滴等则将两种技术路线结合使用。

基于对企业“大模型+数据分析”落地实践的调研与研究,沙丘智库发布《2024年“大模型+数据分析”最佳实践报告》,为企业提供一份全面的应用指南,包括“大模型+数据分析”的技术实现路径、企业采纳现状与22个典型实践案例(涉及互联网、金融、汽车制造等行业)等。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### ChatBI 的核心技术原理 ChatBI 核心技术主要依赖于自然语言处理 (NLP) 和机器学习算法解析用户输入并提供相应的数据分析结果。通过先进的 NLP 技术ChatBI 能够理解和解释人类的语言表达方式,从而实现对话即分析的功能[^1]。 具体来说,ChatBI 使用深度神经网络模型来进行语义理解,这些模型经过大量真实世界对话数据训练而成,使得系统不仅能够识别关键词汇,还能捕捉上下文关系以及隐含意义。这种强大的语言理解能力使 ChatBI 可以应对各种复杂查询请求,并给出精准的回答或建议。 ### 架构设计 ChatBI 的架构通常由以下几个关键组件构成: #### 1. 用户交互层 负责接收来自前端应用或其他渠道的用户指令,并将其传递给下一层进行处理;同时也用于展示最终的数据可视化结果给终端使用者查看。 #### 2. 自然语言处理器(NLU) 这是整个系统的中枢部分,它利用预训练好的大规模语言模型对收到的文字信息做深入剖析,提取其中蕴含的任务目标、参数条件等要素,以便后续操作能准确无误地执行。 #### 3. 数据访问接口(DAL) 连接着后台数据库或者其他形式存储介质,在接收到经由 NLU 解析后的查询命令之后,DAL 将依据指定规则获取所需原始资料供下一步骤使用。 #### 4. 分析引擎(AE) 基于获得的具体数值集合作进一步计算加工,生成直观易懂的结果图表或是其他类型的反馈内容返回至最上端显示出来。 ```mermaid graph TD; A[用户交互层] --> B[NLU]; B --> C[DAL]; C --> D[AE]; D --> E[结果呈现]; ``` ### 主要特点 - **智能追问机制**:当检测到用户的初始问题是不清晰或者是多义的情况下,ChatBI 不会简单拒绝而是主动发起询问帮助对方更好地描述自己的需求。 - **实时响应速度**:得益于高效的内部流程优化措施加上云计算平台的支持,即使面对海量级的信息检索任务也能保持极低延迟的表现水平。 - **灵活适配性强**:无论是结构化还是非结构化的异源异构型数据资源都能被有效整合起来参与运算过程之中,极大地拓宽了应用场景范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值