DeepSeek-R1慢思考、长推理的表现,展现了训练步骤增加,会导致长CoT的涌现。
它通过模拟人类思维逐步推导答案,提升了AI大模型的推理能力和可解释性。
但长CoT的触发条件是什么?怎么做能优化它?像个黑盒,还没研究明白。
来自清华、CMU和IN.AI的研究团队,近期专门探究了长CoT在大模型中的工作机制和优化策略。
先把该研究得出的4点发现给大家呈上来:
-
SFT并非必需,但能简化训练并提高效率;
-
推理能力随着训练计算的增加而出现,但并非总是如此;
-
可验证奖励函数对增长CoT至关重要;
-
纠错等核心能力基础模型天生自带,但通过RL有效地激励这些技能需要大量的计算。
这篇论文开始被网友疯转,并被感慨道:这可太酷啦!
还有网友表示,不出所料,奖励函数果然很重要~
从SFT和RL两方面研究长CoT
研究团队明确表示:
我们的目标是揭开大模型中长CoT推理的神秘面纱。
通过系统分析和消融,提取关键见解,并提供实用策略来增强和稳定其性能。
团队采用了2款基础模型:
-
Llama-3.1-8B:来自Meta,是具有代表性的通用模型。
-
Qwen2.5-7B-Math:来自阿里通义,是具有代表性的数学专业模型。
同时采用了4个代表性推理基准:
MATH-500、AIME 2024、TheoremQA和MMLU-Pro-1k。
默认情况下,温度t=0.7、顶部−p值=0.95,最大输出长度=16384 tokens。
而具体过程,从SFT(监督微调)和RL(强化学习)两方面下手。
研究人员默认使用MATH的7500个训练样本提示集来提供可验证的真值答案。
SFT对长CoT的影响
团队首先探究了SFT对长CoT的影响。
通过在长CoT数据上进行SFT,模型能够学习到更复杂的推理模式。
但目前而言,短CoT更为常见,这就意味着针对其收集SFT数据相对简单。
鉴于此,团队选择用阿里通义的QwQ-32B-Preview来提炼长CoT,用阿里通义的Qwen2.5-Math-72B-Struct来提炼短CoT。
具体来说,研究人员先对每个prompt的N个候选响应进行采样,然后筛选出具有正确答案的响应。
对于长CoT,使用N∈{32, 64, 128, 192, 256};对于短CoT,使用N∈{32, 64, 128, 256},(此处为了提高效率跳过了一个N)。
在每种情况下, SFT标记的数量都与N成正比。
如下图虚线所示,随着扩大SFT的token,对长CoT进行SFT,会继续提高模型准确性;而对短CoT来说,SFT带来的效益在很早就达到饱和。
譬如在MATH-500上,长CoT SFT的准确率超过70%,tokens达到3.5B时仍然没有进入瓶颈期。
相比之下,短CoT SFT的tokens从约0.25B增加到1.5B,准确率仅产生了3%的增长。
实验结果显示,长CoT SFT能够显著提高模型的性能上限。
而且,在达到更高性能的同时,还有比短CoT更高的性能拓展空间。
RL对长CoT的影响
由于业内普遍认为RL的上限高于SFT,团队将长CoT和短CoT视为针对RL的不同SFT初始化方法进行比较。
研究人员使用SFT检查点来初始化RL,并训练了四个epoch,每个prompt生成四个响应。
此外,团队把PPO和来自MATH数据集的基于规则的验证器训练拆分,作为RL的提示集。
具体结果同样在下图中显示出来:
图中实线和虚线之间的间隙表明,使用长CoT SFT初始化的模型通常可以通过RL进一步显著改进,而使用短CoT SFT初始化的模型从RL中获得的收益很小。
例如,在MATH-500上,RL可以将长CoT SFT模型绝对改进3%以上,而短CoT SFT模型在RL前后的精度几乎相同。
需要注意的是,RL并不总是能够稳定地扩展思维链的长度和复杂性。
为此,研究团队引入了一种带有重复惩罚的余弦长度缩放奖励机制,有效稳定了思维链的增长,并鼓励模型在推理过程中进行分支和回溯。
整理长CoT数据
除上述研究外,为了整理长CoT数据,研究团队比较了两种方法。
一种是通过提示短CoT模型,生成原始动作,并按顺序组合它们,以此构建长CoT轨迹。
另一种是从现有的长CoT模型中提炼出长CoT轨迹——这些模型表现出涌现长CoT(emergent long CoT)。
结果表明,从涌现长CoT模式中提炼出来的模型,比构建的模式泛化得更好,并且可以用RL进一步显著改进。
在构建模式上训练的模型则不能做到这一点。
此外,由于DeepSeek-R1已经证明,在基础模型上扩展RL计算可以出现长CoT,自我验证行为有时会被模型的探索标记为紧急行为或 “顿悟时刻”。
这种模式在短CoT数据中很少见,但研究人员注意到,有时基座模型已经存在自我验证行为,而用RL强化这些行为需要严苛的条件。
如下图所示,Qwen2.5Math-7B的RL有效地提高了准确性,但没有增加基础模型输出中存在的 “recheck” 模式的频率,也没有有效地激励其他反射模式,如 “retry” 和 “alternatively”。
这表明尽管提高性能效果显著,但来自基座模型的RL不一定会激励反射模式。
四个关键发现
在系统性研究了长CoT推理的机制后,团队提出了4个关键发现。
第一,SFT并非必需,但能简化训练并提高效率。
虽然SFT并非训练长CoT的必要条件,但它能够有效地初始化模型,并为后续的RL训练提供坚实的基础。
第二,推理能力随着训练计算的增加而出现,但并非总是如此。
长CoT的出现并非必然,且朴素的RL方法并不总是能有效地延长CoT长度。
需要通过奖励塑造等技巧来稳定CoT长度的增长,团队的做法是引入了一种余弦长度缩放奖励,并加入了重复惩罚,这既平衡了推理深度,又防止了无意义的长度增加。
第三,可验证奖励函数对CoT扩展至关重要。
由于高质量、可验证数据稀缺,扩展可验证奖励函数对RL至关重要。
论文探索了利用网络提取的包含噪声解决方案的数据,并发现这种“银色”监督信号在RL中展现出巨大的潜力,尤其是在处理OOO任务(如STEM推理)时。
第四,基模型中天生存在错误修正和回溯等技能,但通过RL有效地激励这些技能需要大量的计算。
而测量这些能力的出现需要更精细的方法,需要谨慎设计RL激励。
最后,研究团队提出了几个未来的研究方向,包括:
扩大模型规模、改进RL基础设施、探索更有效的验证信号以及深入分析基础模型中的潜在能力。
这些方向有望进一步推动长CoT在大模型中的应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。