Ds的本地部署和落地需要向各级申请资源,有投入就要有产出,如何从诸多想法中筛出容易落地和出成果的项目,为后续追加投资和续写故事提供充足的依据?举两个例子供大家参考。
公文相关业务
前期以[《医疗大模型从小事做起:协同办公》]为题,讨论过公文处理。但当时写得比较大,如今看到Ds可以快速部署落地,这件事也可以聚焦为公文处理。
公文处理有两个最直接特点:一是严谨,二是实用。严谨不仅仅是格式和结构上的规范,更要求整体内涵不能出现偏差,不能出错遗漏甚至引发舆情。实用性强调解决具体问题。我在各类型医院工作期间,亲眼目睹因公文质量层次不齐,引发的各级领导不满甚至出现事故,不在少数。小到一份学术年会上的领导致辞稿上的错别字,大到一份下发全院的年度大项工作规划中的前后逻辑矛盾等等,都给部门形象和权威性带来不小影响。
说实话,公文工作做久了,只要是个有心人,他(她)心里考虑最多的一定不是出彩,而是不出错。但有心不一定有能力,借助Ds强大的中文逻辑推理和长文本处理能力,向医院各行政部门提供文字校验核对、润色、方案建议等常态化文字类服务,可在短期内把相关部门(尤其是分院区)的公文整体水平拉齐到及格线以上,减少出错情、漏情和舆情的几率。特别是Ds的逻辑推理过程,不仅授人以鱼,而且授人以渔,理论上可以起到“传、帮、带”的作用。
Ds+公文部署和落地的产品优势:(1)效果看得见、易扩散。如果产品力够好,Ds带来的文案效果会在公文流转的过程中自行传播发酵,尤其是让院领导、科室主任这些关键用户看到,逐渐获得高权重用户的认可,也为Ds下一步探索积累正反馈。(2)优质语料可获得性好。本地部署需要语料训练或微调模型来确保公文质量和合规性。这方面公开的优质语料多,可获得性好。比如国家、地方性的行政法规、工作报告、党政机关公文处理工作条例等规范。院内也有,之前在几篇文章都有提过,不再赘述。
医院内部审计工作
之所以把医院内审单独拎出来讲,基于两点考虑:
内审工作的重要性。医院内部审计工作是各级近年来提得比较多的一个话题,主要包括财务审计、内控审计、绩效审计、政策落地审计、专项审计等等,政策方面有《进一步加强卫生健康行业内部审计工作的若干意见》等,有兴趣的自行查询研究。
IT视角的内审工作。我读博前,有幸在医院内审工作岗位锻炼过近一年,站在IT产品建模的角度,我理解的医院内审工作是,依赖于复杂规则的多类型文档、多维度交叉比对和验证工作。
复杂规则:来源于多层级、跨专业的监管要求。需处理法规政策、医院章程、科室操作规范等复杂嵌套约束条件,且一直在更新中。
多类型文档:涉及病历文书、采购合同、绩效考核记录等非结构化长文本,需NLP技术实现多模态语义对齐(例如医嘱记录与收费明细的跨模态关联验证)。
多维度交叉比对和验证:上下文和跨文本的语义理解及关联性分析、时序逻辑检验、风险识别等等。
现阶段,基于信息科有限的人力物力以及难易程度,可以从几件小事入手:
一是政策解读和合同文书审核工作。内审人少事多文档厚,对有限的人力是非常大的考验。另外,文档虽长,但审计更多地关注关键要素和条款,如时间、金额、责任人等。对于文档关键信息的提取处理正是Ds擅长的。
二是从政策到规则的智能转化工作。审计的依据是政策,政策一直在更新迭代,全靠人脑是记不住的。基于Ds可以把政策、审计条款、各级打补丁的要求等,统统转化为数字规则库并持续更新,逐渐实现一些基础校验工作。
以上选了两个案例,基于几个考虑:首先是信息科有限的人力物力和定位考虑,合理控制实施难度;其次是选择人少事多且权重高的用户群体,充分发挥Ds在中文语言处理领域的优势,快速起效,为后续的探索积累资源和口碑。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。