从财务分析到经营决策,AI 正在重新定义企业管理的方式。那么,DeepSeek 在经营分析中到底能发挥哪些作用?我们如何用好这个工具,让它成为分析的“得力助手”?文末可下载精美模板。
今天,我们就来聊聊 DeepSeek 在经营分析中的 5 大应用场景,并结合 Power BI,看看如何把 AI 玩出“花”。
一、数据解读:让数字开口说话
在企业经营分析中,数据量往往庞大而杂乱,尤其是财务报表、销售数据、库存管理等信息,想要快速提炼关键指标,往往需要耗费大量时间。
如何用 DeepSeek?
1.财务报表解读
o你可以输入资产负债表、利润表、现金流量表,让 DeepSeek 帮你提炼核心数据,比如毛利率、净利率、资产周转率等关键指标,并给出分析结论。
o示例提问: “请根据这份财务报表,分析公司的盈利能力和风险点。”
2.趋势预测
o通过输入过往 12 个月的销售数据,DeepSeek 可以帮助识别销售趋势,并初步分析季节性波动。
o示例提问: “根据这组数据,预测未来 3 个月的销售趋势。”
3.异常识别
o让 DeepSeek 发现数据异常,比如库存周转异常、应收账款增速异常等,帮助管理层提前预警。
o示例提问: “请分析这组数据中是否有异常情况,并给出可能的解释。”
💡 结合 Power BI 将财务数据可视化后,结合 DeepSeek 提炼结论,让 AI 帮你“用人话”总结数据。
二、竞争分析:让 AI 帮你盯住对手
企业经营分析,离不开对竞争对手的研究。市场调研、对标分析、竞品优劣势分析,以前都需要大量人工搜索、整理,如今 DeepSeek 可以帮助你 秒变“行业专家”。
如何用 DeepSeek?
1.行业研究
o让 DeepSeek 总结行业趋势、市场规模、竞争格局。
o示例提问: “请总结 2025 年中国房地产行业的主要趋势。”
2.竞品分析
o输入竞争对手的信息,DeepSeek 可以帮你梳理 SWOT 分析,发现它的优势和短板。
o示例提问: “请分析 A 公司和 B 公司的竞争优势,比较它们的市场策略。”
💡 结合 Power BI 利用 Power BI 收集行业数据,并用 DeepSeek 进行文本分析,形成更全面的竞争对标报告。
三、经营决策:辅助高管快速决策
老板们最怕什么?——数据太多,看不懂!DeepSeek 可以帮助管理层快速理解关键数据,辅助决策。
如何用 DeepSeek?
1.定量分析
o帮助计算 ROI(投资回报率)、成本利润比、库存周转率等指标,并给出解读。
o示例提问: “如果我们将营销预算增加 10%,预计对销售额的影响是多少?”
2.定性分析
oDeepSeek 可以通过案例分析,提供类似企业的成功经验或失败教训,帮助决策者规避风险。
o示例提问: “请分析一家连锁零售企业拓展新市场的关键成功因素。”
💡 结合 Power BI 在 Power BI 中建立经营分析看板,让 DeepSeek 进行数据解读和趋势预测,帮助高管做更明智的决策。
四、市场营销分析:精准定位目标客户
经营分析的一大难题,就是如何找到最赚钱的客户群体。DeepSeek 可以帮助企业更精准地分析客户需求,提高营销转化率。
如何用 DeepSeek?
1.客户分群
o结合 RFM(最近购买、购买频率、购买金额)模型,DeepSeek 可以帮助企业识别高价值客户。
o示例提问: “请根据这组客户数据,按照 RFM 模型进行分群。”
2.营销策略优化
o帮助分析不同营销策略的有效性,并给出优化建议。
o示例提问: “我们最近的社交媒体广告转化率较低,如何优化营销策略?”
💡 结合 Power BI
用 Power BI 进行数据可视化,让 DeepSeek 进行客户画像分析,精准制定营销策略。
五、智能报表:提升汇报效率
每个月的经营分析会,财务和分析团队都要加班加点整理报告,而 DeepSeek 可以 大幅提升报表生成效率。
如何用 DeepSeek?
1.自动生成经营分析报告
o直接输入数据,让 DeepSeek 生成完整的分析报告,涵盖盈利能力、成长性、风险点等内容。
o示例提问: “请基于这组财务数据,撰写一份经营分析报告。”
2.优化汇报内容
o让 DeepSeek 帮助优化 PPT 内容,使报告更加直观易懂。
o示例提问: “请简化这份经营分析报告,使其更适合向管理层汇报。”
💡 结合 Power BI 在 Power BI 中建立动态报表,结合 DeepSeek 生成文字解读,让汇报更加生动高效。
总结
DeepSeek 正在成为财务和经营分析的“好帮手”,它不仅能帮助财务人 更快解读数据、优化经营决策,还能提升汇报效率,让分析更具价值。结合 Power BI,AI 还能让数据可视化与智能分析无缝结合,让经营分析 更精准、更高效。
财务分析的终极目标,不是做表格,而是影响决策! AI 时代,财务人不再只是“数据搬运工”,而是数据分析师、经营顾问、企业智囊。用好 DeepSeek,我们可以 更轻松、更智慧地做好经营分析,助力企业成长。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。