Radiology近期的研究基于机器学习技术整合多模态数据,构建了一种冠状动脉疾病患者主要不良心血管事件风险预测模型。该研究模型构建的过程非常典型,模型评估所用的方法也非常全面,本文对其中涉及的技术路线进行梳理,希望对大家有所帮助。同时,我正针对医学人工智能开发分析软件,对于涉及哪些方法、生成哪些结果、用什么颜色风格等都十分欢迎大家入群提意见。资源获取及进群方式请看文末。
引言
心血管疾病是全球主要的健康威胁之一,其中冠状动脉疾病(CAD)更是最常见的类型。冠状动脉疾病不仅严重影响患者的生活质量,还可能导致心力衰竭和猝死等严重后果。对于冠状动脉疾病的诊断,冠状动脉CT血管造影及磁共振负荷心肌灌注检查的结合应用对实现精准的风险分层和治疗决策至关重要。
目前,机器学习模型已被广泛应用于多种心血管疾病的预后评估,但由于不同成像技术的数据难以同时整合和分析,通过机器学习技术整合多模态数据进行心血管风险分层尚未得到充分研究。Radiology近期的研究凭借机器学习技术,旨在整合多模态数据来提升预后评估能力。
数据及方法
该研究纳入2008年12月至2020年1月间Jacques Cartier私人医院的2038例患者数据进行模型开发,并将另外两家医疗机构的543例患者数据作为外部数据集。该研究构建模型模型的过程中,使用到18项临床变量、2项超声心动图变量、9项冠状动脉CT血管造影变量以及12项磁共振负荷心肌灌注检查变量。
首先,该研究使用Lasso特征选择进行特征选择,共筛选出6个关键变量。在使用Lasso进行特征选择的过程中,通常会生成lasso_path和mse_path两项结果展示图,其中lasso_path反应的是随正则化参数λ变化而变化的特征系数,mse_path反应的的是随正则化参数λ变化而变化的平均方差(当然mse_path也可以替换为其它评价指标,该研究就替换为Auc)。
其次,该研究使用机器学习算法在特征选择结果的基础上构建模型。该模型采用了逻辑回归、XGBoost以及随机森林等算法构建预测模型,并通过ROC曲线、precision-recall曲线、校准曲线、F1 score、敏感性、特异性、PPV、NPV和Brier评分等评估方法对模型性能进行验证。
最后,该研究通过SHAP值评估每个变量对最终模型的贡献。
总结
总的来说,基于机器学习开展数据分析整体都是这个流程。
首先,需要通过数据收集及处理获取数据表格。该研究即是将多模态数据转换为表格数据,例如针对医学影像,该研究采用了左心室肥厚、左心室舒张末期容积指数等变量(顺便提一句,医学影像通过pyradiomics提取影像组学变量,技术路线也是一样的)。
其次,就是针对获取的数据表格进行特征选择。常用的特征选择方法包括Lasso及递归特征消除两种方法,Lasso适用于回归或二分类场景,不太适合在变量非常多的情况;递归特征消除则仅会生成一张结果展示图。
接下来,就是基于机器学习算法进行模型构建。可能大家会疑惑使用随机森林、XGBoost这些算法还需要特征选择么?答案是肯定的,合适的特征选择只会使模型效果更好。
再之后,就是对模型进行评估。该研究使用的评估方法很全,这一点也是我选择解读这篇论文的一个原因。
最后,就是通过SHAP值评估每个变量对最终模型的贡献,可以说SHAP值是目前在机器学习相关研究中最为常见的可解释性方法了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。