- 博客(97)
- 收藏
- 关注
原创 DeepSeek爆了,普通人如何3小时完全从0训练自己的大模型
MiniMind 降低了 AI 开发的门槛,让更多人能够参与到大语言模型的探索中来。无论你是:想入门 AI 的开发者需要定制化 AI 助手的企业对语言模型感兴趣的研究者。
2025-02-06 19:55:41
9413
原创 SIG 动态 | OneGraph发布更新:大模型驱动的开放知识图谱
从0开始充分利用大模型构建了千万级中英双语概念知识图谱,并进行了数据开放,进行了利用大模型构建LLM需要的知识图谱的初步探索。
2025-02-06 19:54:35
1068
原创 RAG从入门到精通系列:Query Construction(查询构造)
LLM(Large Language Model,大型语言模型)是一个功能强大的新平台,但它们并不总是使用与我们的任务相关的数据或者是最新的数据进行训练。RAG(Retrieval Augmented Generation,检索增强生成)是一种将 LLM 与外部数据源(例如私有数据或最新数据)连接的通用方法。它允许 LLM 使用外部数据来生成其输出。是指根据用户输入的自然语言问题,通过语义解析、上下文理解以及路由后的结果,生成特定领域数据源所需的查询语句或格式化内容。
2025-02-05 20:17:43
713
原创 DeepSeek系列模型完全使用手册|附安装教程
DeepSeek系列模型在去年12月发布以来引起了不少关注,而推理模型R1的发布则进一步点燃了国内外用户的热情。鉴于仍有不少用户完全没有使用经验,而网上现有的信息可能比较零碎,反而会导致初学者更加困惑。因此本文整理了DeepSeek系列模型的基本说明和一些使用方法,此外还提供了一个第三方客户端的安装教程,用于让初学者也能用上国产最强大的推理模型。
2025-02-05 20:16:32
1927
原创 本地部署大模型实现OCR识别
在数字化时代,光学字符识别(OCR)技术已成为信息处理和文档管理的重要工具。近年来,随着大模型技术的兴起,OCR技术迎来了新的发展机遇。本文将探讨大模型在OCR识别中的应用,分析其技术优势、行业实践以及未来趋势。OCR识别的难点OCR尽管该技术已经有了很大的进步,但在实际应用中仍然存在一些难点和挑战。图像质量是影响OCR效果的重要因素,包括低分辨率、模糊不清以及噪音等问题都会导致字符细节丢失或干扰,从而影响识别准确性。
2025-02-05 19:41:18
2238
原创 一文解析 DeepSeek 大模型高效训练背后的极限 AI 工程优化
国产之光 Deepseek 大模型成功出圈,在效果比肩非开源模型ChatGPT的同时,其运行成本很低。那么 Deepseek 是如何实现这么高效的训练呢?文本将简要介绍 Deepseek 母公司幻方开源的 HAI-platform 大模型训练工具,来一窥极限 AI 工程的秘密。为了更好地发挥 GPU 集群的计算能力,训练具有惊人功能的、强大的万亿参数模型,一个高效简洁的大模型训练工具十分必要。
2025-02-05 19:40:14
1649
原创 ECCV-2024 | 多模态大模型助力具身导航!NavGPT-2:释放视觉语言大模型的导航推理能力
论文通过提出NavGPT-2系统,抹平了基于LLMs的导航模型与VLN专用模型之间的性能差距,同时保持了LLMs在导航过程中生成解释性导航推理的能力。通过综合实验,展示了将LLMs与下游导航策略网络高效集成的可行性,证明了VLM潜在表示在视觉-语言-动作对齐中的优越性和效率。
2025-02-05 19:39:11
1493
原创 Ollama+DeepSeek+AnythingLLM搭建个人AI知识库
DeepSeek近一个月来一直遭受大量海外攻击,1月27日起手段升级,除了DDos攻击,分析发现还包括了大量的密码爆破攻击,时常宕机。正好上一篇文章有人建议用AnythingLLM套个壳子会更舒服,再加上官网的服务有点不太稳定,所以今天才到家试试简单部署一下整个GUI看看。首先需要先本地部署一下DeepSeek,这里可以参考我上一篇文章 部署完成后再套个壳子官网下载AnythingLLM一直下一步就行了 安装好开始配置 这里选Ollama 地址按它默认的填就行。然后创建工作区。
2025-02-05 19:38:19
1485
原创 详解DeepSeek-R1核心强化学习算法:GRPO
在目前大语言模型中进行微调的流程中,一般在监督微调(Supervised Fine-Tuning, SFT)阶段之后,进一步通过强化学习对模型进行优化可以显著提升其性能。而Group Relative Policy Optimization (GRPO),就是使用在该阶段,替换传统的PPO算法。Proximal Policy Optimization (PPO) 是一种广泛使用的强化学习算法,尤其适用于对 LLMs 进行微调。
2025-02-04 21:44:53
3801
原创 微软最新研究:RAG系统研发指南
指出 LLMs 在专业领域应用存在如幻觉、知识不匹配等问题,数据增强技术虽受关注但应用面临诸多挑战,涵盖数据处理、检索和模型可解释性等方面。将数据增强的 LLM 应用定义为,并依据查询对外部数据的利用程度和方式分为明确事实查询隐含事实查询可解释原理查询和隐藏原理查询四个层次。数据增强的大语言模型(LLM)应用可以有多种形式,从常见的基于特定领域数据的问答机器人,到复杂数据管道中的语义处理操作,甚至是多智能体系统中处理特定步骤的智能体。
2025-02-04 21:43:13
958
原创 北大崔斌教授 | 通过循证医学的检索与推理打造值得信赖的大语言模型医生
近年来,大语言模型(LLMs)在临床场景中展现出显著的能力。然而,尽管它们具有潜力,但在将LLMs应用于医疗环境时,现有研究面临诸多挑战。依赖医学数据集训练的策略成本高昂,并且训练数据可能过时。利用外部知识库是一种合适的替代方法,但它面临检索精度有限和答案提取效果不佳等障碍。这些问题共同导致LLMs在掌握医学专业知识方面无法达到预期的熟练程度。为应对这些挑战,提出Med-,这是一种新颖的大语言模型医生框架,它遵循循证医学(EBM)流程。
2025-02-04 20:45:52
809
原创 知识蒸馏技术原理详解:从软标签到模型压缩的实现机制
与仅使用独热编码标签(如[1, 0, 0])的传统训练方法相比,知识蒸馏技术通过引入教师模型的软标签信息,显著降低了学生模型的学习难度。这种知识迁移机制使得构建小型高效模型成为可能,为模型压缩技术提供了新的解决方案。
2025-02-04 20:43:34
1495
原创 4000字!深度解析 DeepSeek 的蒸馏技术
模型蒸馏(Knowledge Distillation)是一种将大型复杂模型(教师模型)的知识迁移到小型高效模型(学生模型)的技术。其核心目标是在保持模型性能的同时,显著降低模型的计算复杂度和存储需求,使其更适合在资源受限的环境中部署。在机器学习中,模型蒸馏是一种优化技术,通过模仿教师模型的输出,训练一个较小的学生模型,从而实现知识的传递。教师模型通常具有较高的性能,但计算成本高昂,而学生模型则更加轻量级,推理速度更快,且内存占用更少。
2025-02-04 20:42:45
14587
原创 无需联网!DeepSeek-R1+本地化RAG,打造私有智能文档助手
DeepSeek-R1 自从1-20号开源/发布十天以来,鲶鱼效应应接不暇,OpenAI o3-mini 也在 10个小时前向免费用户推送。官方开源的版本除了满血的 671b 外,还有 1.5b,7b,8b,14b,32b,70b 六个蒸馏后的尺寸,笔者使用 Ollama 在电脑本地部署了 7b 的模型,在终端中测试了虽然回答没有满血版的那么惊艳,但凑活能用。作为一款高阶模型开源,确实要 salute 一下。
2025-02-04 20:41:19
2792
1
原创 RAG中的5种文档切分策略:动态图示清晰解析
每种分块技术都有其自身的优点和权衡。在许多情况下,我发现语义分块的效果相当不错,但仍然需要实际测试。选择哪种策略取决于数据的特性、嵌入模型的能力、计算资源等因素。
2025-02-03 10:45:00
2510
原创 11.2k。一个包,调通所有大模型
一个包,调通所有大模型,今天介绍一个由Vercel推出的AI SDK,是一个TypeScript工具包,支持开发者使用React、Next.js、Vue、Svelte、Node.js等技术栈构建AI应用。该SDK内置了多种AI模型适配器,周下载量超过56万,高达11.2k star。
2025-02-02 10:45:00
1044
原创 清华提出的T1框架:用强化学习解锁大模型推理能力的新高度
大模型推理的挑战:为什么强化学习至关重要?大语言模型(LLMs)近年来在复杂推理任务上表现出色,但大多依赖于模仿学习(SFT),难以突破推理能力的瓶颈。现有方法在测试阶段通常通过重复采样和外部验证器筛选答案,这不仅增加了推理成本,还无法直接提升模型的推理能力。强化学习(RL)为改进模型的自我探索和推理能力提供了潜力,但在复杂推理任务中表现有限且缺乏扩展性。
2025-02-01 10:45:00
1063
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人