基于大数据的B站用户行为的分析与推荐平台的设计与实现

开发环境

开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7
数据库:mysql5.7(一定要5.7版本) 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea
Maven包:Maven3.3.9 浏览器:谷歌浏览器

后台路径地址:localhost:8080/项目名称/admin/dist/index.html
前台路径地址:localhost:8080/项目名称/front/dist/index.html (无前台不需要输入)

管理员账号:admin 管理员密码:admin

开发技术简介

Java简介

Java是一种面向对象的静态式编程语言。Java编程语言具有多线程和对象定向的特点。其特点是根据方案的属性将方案分为几个不同的模块,这些模块是封闭的和多样化的,在申请过程中具有很强的独立性。Java语言在计算机软件开发过程中的运用可以达到交互操作的目的,通过各种形式的交换,可以有效地处理所需的数据,从而确保计算机软件开发的可控性和可见性。开发java语言时,保留了网络接口,Java保留的缺省网络接口可以与web应用程序编程所依赖的类别库相匹配。为了使Java开发的应用程序更加稳定和强健,Java会自动收集程序中的垃圾,并处理程序中存在的异常。Java语言是日常开发过程中广泛使用的通用基本语言。其中Java语言课程库、句子、语法规则和关键字经常用于计算机软件的开发和编程。
面向对象编程是Java语言最显着的特点。它具有原始接口和补充接口以及继承,不仅可以实现相同类型的单个继承,而且还支持接口之间的多个继承,从而实现类、接口和接口之间以及类和接口之间的有效通信。Java的面向对象特性主要包括三个方面:继承、多态性和封装。封装是Java的核心,可以封装所有数据操作。多态性是指由面向对象行为派生的相关行为。继承作为特殊编程模式有两种类型:父类和子类,这两种类型的属性具有相同的功能和特性。对于父类的属性特性,子类可以实现继承和优化。

Spring Boot框架介绍

SpringBoot是近几年最为流行的后台开发框架,它的诞生一改过去Spring框架开发中繁琐的配置,极大地简化了Spring应用的搭建和开发。SpringBoot框架不仅保有了Spring框架中的所有优秀特性,还通过使用特定的配置方式,在底层帮助开发人员在工程创建是就预先做了很多配置,这样在开发时就不再需要开发人员过多进行繁琐的配置了。另外在SpringBoot中集成了大量框架,这就使得开发人员不再需要到处寻找在导入开发中需要依赖的jar包,同时也解决了依赖包版本冲突问题,从而提高了依赖包引用的稳定性,从而实现了对Spring应用搭建和开发过程的简化。

MySQL数据库

MySQL是一种关系型的数据库管理系统,属于Oracle旗下的产品。MySQL的语言是非结构化的,使用的用户可以在数据上进行工作。这个数据库管理系统一经问世就受到了社会的广泛关注。在各个方面,与同等的数据库相比,MySQL的优点极为突出,它的运行速度快,适用的范围广泛,而且数据库的安全性这一方面独树一帜。在语言结构方面,MySQL的语言简单,其他数据库需要一大段代码来实现的操作,MySQL仅需要一小部分代码甚至几行。综上所述,MySQL这种关系型数据库管理系统,已经成为了开发者进行项目的数据开发、存储的不二之选。MySQL的功能也多种多样,如数据操纵和数据库的建立维护等。而且该数据库的数据共享性高、冗余度低而且容易扩充。MySQL在安全性这一方面也具有自身的特点,它应用了用户的标识和鉴别技术,对试图和数据进行加密,确保资料信息的可靠性。介于数据库系统的功能与强大等性质之间,本数据库系统的设计中主要使用了MySQL实现对数据的处理。基于Web的付费自习室管理系统运用MySQL数据库,在Web应用这一块,MySQL是最好的选择。对于该系统整个的开发、搭建、运行和维护具有极其重要的作用。

详细视频演示

请联系我获取更详细的演示视频

系统功能部分效果在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

核心代码

package com.controller;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Arrays;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.UUID;

import org.apache.commons.io.FileUtils;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpHeaders;
import org.springframework.http.HttpStatus;
import org.springframework.http.MediaType;
import org.springframework.http.ResponseEntity;
import org.springframework.util.ResourceUtils;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.multipart.MultipartFile;

import com.annotation.IgnoreAuth;
import com.baomidou.mybatisplus.mapper.EntityWrapper;
import com.entity.ConfigEntity;
import com.entity.EIException;
import com.service.ConfigService;
import com.utils.R;

/**
 * 上传文件映射表
 */
@RestController
@RequestMapping("file")
@SuppressWarnings({"unchecked","rawtypes"})
public class FileController{
	@Autowired
    private ConfigService configService;
	/**
	 * 上传文件
	 */
	@RequestMapping("/upload")
    @IgnoreAuth
	public R upload(@RequestParam("file") MultipartFile file,String type) throws Exception {
		if (file.isEmpty()) {
			throw new EIException("上传文件不能为空");
		}
		String fileExt = file.getOriginalFilename().substring(file.getOriginalFilename().lastIndexOf(".")+1);
		File path = new File(ResourceUtils.getURL("classpath:static").getPath());
		if(!path.exists()) {
		    path = new File("");
		}
		File upload = new File(path.getAbsolutePath(),"/upload/");
		if(!upload.exists()) {
		    upload.mkdirs();
		}
		String fileName = new Date().getTime()+"."+fileExt;
		File dest = new File(upload.getAbsolutePath()+"/"+fileName);
		file.transferTo(dest);
		/**
  		 * 如果使用idea或者eclipse重启项目,发现之前上传的图片或者文件丢失,将下面一行代码注释打开
   		 * 请将以下的"D:\\springbootq33sd\\src\\main\\resources\\static\\upload"替换成你本地项目的upload路径,
 		 * 并且项目路径不能存在中文、空格等特殊字符
 		 */
//		FileUtils.copyFile(dest, new File("D:\\springbootq33sd\\src\\main\\resources\\static\\upload"+"/"+fileName)); /**修改了路径以后请将该行最前面的//注释去掉**/
		if(StringUtils.isNotBlank(type) && type.equals("1")) {
			ConfigEntity configEntity = configService.selectOne(new EntityWrapper<ConfigEntity>().eq("name", "faceFile"));
			if(configEntity==null) {
				configEntity = new ConfigEntity();
				configEntity.setName("faceFile");
				configEntity.setValue(fileName);
			} else {
				configEntity.setValue(fileName);
			}
			configService.insertOrUpdate(configEntity);
		}
		return R.ok().put("file", fileName);
	}
	
	/**
	 * 下载文件
	 */
	@IgnoreAuth
	@RequestMapping("/download")
	public ResponseEntity<byte[]> download(@RequestParam String fileName) {
		try {
			File path = new File(ResourceUtils.getURL("classpath:static").getPath());
			if(!path.exists()) {
			    path = new File("");
			}
			File upload = new File(path.getAbsolutePath(),"/upload/");
			if(!upload.exists()) {
			    upload.mkdirs();
			}
			File file = new File(upload.getAbsolutePath()+"/"+fileName);
			if(file.exists()){
				/*if(!fileService.canRead(file, SessionManager.getSessionUser())){
					getResponse().sendError(403);
				}*/
				HttpHeaders headers = new HttpHeaders();
			    headers.setContentType(MediaType.APPLICATION_OCTET_STREAM);    
			    headers.setContentDispositionFormData("attachment", fileName);    
			    return new ResponseEntity<byte[]>(FileUtils.readFileToByteArray(file),headers, HttpStatus.CREATED);
			}
		} catch (IOException e) {
			e.printStackTrace();
		}
		return new ResponseEntity<byte[]>(HttpStatus.INTERNAL_SERVER_ERROR);
	}
	
}

系统功能测试

本系统首先在本地服务器上进行了安装和测试,之后鉴于对系统的结构和处理方法的充分熟悉和对系统特性的充分了解,对系统进行了白盒测试和黑盒试验。
在发展软件系统的整个过程中,人们必须面临错综复杂性的实际问题,所以,在软件系统生存周期的各个过程中都必然地会形成错误。应用软件检测目的在于:出现出错并运行某个程序的步骤,而应用软件检测的最重要目的便是找到其中尚未发生的出错。
为了制定出合理的测试计划,根据以下原则开始了测量;任何测试都要追溯到客户需要;当确定了客户使用模型后就要着手制定测试计划,并在编码以前就对整个软件测试工作做出规划和制定;御用Pareto原理,主要对占出了百分之八十九以上的最易于出错的约百分之二十的模板实施了检测,并从小规模开始逐步实施大量检测,范围一般从主要检测单编程模板再到完全集成的模板;同时精心设计了检测方法,尽可能地全面覆盖所有程序逻辑并使其满足要求的能力。

结论

本系统相对于我查阅到的其他系统具有如下优点:其功能全面、易于日后程序更新、数据库管理容易、界面友好、操作方便、效率高、安全性好。
本系统在技术层面具有如下优点:第一,用java实现动态页面,使软件系统具备了很好的可维护性和可复用性。其次,在本系统的编写流程中使用的是Spring
Boot框架,该框架将更有效的把显示功能与逻辑分开,使得模块更易于管理,尤其适用于大型项目的编写。第三,后台使用的MySQL数据库系统,MySQL的数据库系统引擎主要集中在了对XML标准的支持,同时具备可扩充、容易应用和安全性高的优点。
综上所述,通过这次从零开始的毕业设计是一次全新的开始,也期待圆满结束。我也希望这次的设计能通过我后期的自主学习把它趋向于完美,成为我的自主创作经验。

<think>好的,我现在需要帮助用户设计实现一个基于大数据的用户满意度分析平台。首先,我得理清楚用户的需求。用户提到了方案、架构和技术栈,所以需要从这几个方面入手。 首先,用户满意度分析通常需要处理大量数据,包括结构化和非结构化的,比如用户反馈文本、评分数据、行为日志等。所以平台需要能够高效地采集、存储和处理这些数据。接下来是架构设计,通常大数据平台会采用分层架构,比如数据采集层、存储层、计算层、分析层和应用层。 数据采集层可能需要实时和离线两种方式,常用的技术比如Flume、Kafka用于实时数据流,而Sqoop可能用于从数据库导入。存储层的话,HDFS适合存储大规模数据,HBase适合实时查询,而对象存储如S3可能用于非结构化数据。计算层需要处理批处理和流处理,Spark和Flink是不错的选择,特别是Spark的机器学习库MLlib可以用来做分析模型。 分析层涉及到数据清洗、特征工程和模型训练,Python在这里可能用得上,尤其是结合PySpark。可视化部分可以用Tableau或Power BI,或者开源的Superset。技术栈需要根据具体需求选型,比如处理实时数据可能需要Kafka+Flink,而批处理可能用Spark。 然后要考虑用户满意度分析的具体模型,可能需要情感分析、NLP处理文本反馈,以及聚类或分类模型来识别关键因素。数据来源方面,用户提到的日志、调查问卷、社交媒体等都需要整合进来。 安全性和可扩展性也是重要部分,比如Kerberos认证和Ranger做权限管理,架构要支持水平扩展,可能用Kubernetes管理容器化服务。另外,引用中的资料提到了大数据平台的核心算法和Python数据分析技术,需要参考这些来设计模型部分。 可能的问题包括如何选择合适的技术组件,如何处理实时离线数据,如何保证数据质量,以及如何部署和扩展平台。需要确保每个环节的技术选型能够协同工作,比如Kafka和Spark Streaming的集成,或者HDFSHBase的搭配。 最后,生成相关问题时要覆盖用户可能关心的性能优化、技术选型对比、数据治理和实际应用案例等方面。确保回答结构清晰,引用相关文献支持技术选择,比如引用[1]和[4]提到的算法和Python技术。</think>### 设计实现基于大数据的用户满意度分析平台方案 #### 一、平台设计目标 1. **数据整合**:支持多源数据(如用户行为日志、调查问卷、社交媒体评论、客服记录等)的实时/离线采集存储[^1]。 2. **智能分析**:通过自然语言处理(NLP)、情感分析、聚类算法等挖掘用户满意度关键因素。 3. **可视化展示**:提供交互式仪表盘,展示用户满意度趋势、问题分布及改进建议。 4. **可扩展性**:支持动态扩容以应对数据量增长,兼容主流大数据技术栈[^3]。 --- #### 二、系统架构设计(分层模型) $$ \begin{array}{|c|c|} \hline \text{应用层} & \text{可视化报表、预警系统、API服务} \\ \hline \text{分析层} & \text{机器学习模型、NLP处理、统计分析} \\ \hline \text{计算层} & \text{批处理(Spark)、流处理(Flink)} \\ \hline \text{存储层} & \text{HDFS、HBase、Elasticsearch、数据仓库(Hive)} \\ \hline \text{采集层} & \text{Flume、Kafka、Logstash、API网关} \\ \hline \end{array} $$ --- #### 三、技术栈选型 | 模块 | 技术组件 | |---------------|--------------------------------------------------------------------------| | **数据采集** | Apache Kafka(实时流)、Flume(日志采集)、Python爬虫(社交媒体)[^4] | | **数据存储** | HDFS(原始数据)、HBase(非结构化数据)、Elasticsearch(文本检索) | | **数据处理** | Spark MLlib(模型训练)、Flink(实时计算)、PySpark(数据清洗) | | **分析建模** | TensorFlow/NLP库(情感分析)、XGBoost(关键因素识别)、Scikit-learn(聚类) | | **可视化** | Grafana(实时监控)、Tableau(交互式分析)、Superset(自助BI) | | **调度管理** | Airflow(任务编排)、Kubernetes(容器化部署) | --- #### 四、关键实现步骤 1. **数据管道构建** - 通过Kafka Connect实现多源数据接入,使用Spark Structured Streaming进行实时ETL。 - 示例代码(数据清洗): ```python from pyspark.sql.functions import udf sentiment_analyzer = udf(lambda text: predict_sentiment(text)) # 调用预训练模型 df = spark.readStream.format("kafka").load() df = df.withColumn("sentiment_score", sentiment_analyzer(df["comment"])) ``` 2. **满意度分析模型** - 使用BERT等预训练模型进行评论文本情感分类,结合LDA主题模型提取用户关注点。 - 构建用户分群模型(如K-means聚类)识别高价值/低满意度群体。 3. **可视化反馈闭环** - 通过Tableau关联用户画像满意度评分,生成动态热力图(如地区/产品线维度)。 - 设置阈值触发自动预警(如某渠道差评率超过15%时通知客服团队)。 --- #### 五、性能优化挑战 1. **数据质量治理**:设计数据血缘追踪系统,结合Great Expectations库进行数据校验。 2. **实时性保障**:采用Lambda架构分离批处理流处理链路,使用Redis缓存高频查询结果。 3. **模型迭代**:基于MLflow实现机器学习生命周期管理,支持A/B测试模型效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写JAVA代码的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值