
机器视觉
文章平均质量分 91
小白熊XBX
精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。
展开
-
【机器视觉】Blob分析详解
在机器视觉领域,Blob分析是一种重要的图像处理技术,用于从图像中提取和识别物体。本文将详细介绍Blob分析的基本概念、算法实现以及在实际应用中的案例,帮助读者理解并掌握这一技术。原创 2024-11-13 14:42:20 · 1426 阅读 · 0 评论 -
【机器视觉】三种常见的模板匹配算法
模板匹配技术是一项强大且灵活的图像处理技术。通过结合图像金字塔、基于形状的匹配(包括形状特征提取、模板创建、匹配过程等)、基于灰度的匹配以及变形匹配等方法,我们可以应对各种复杂的图像匹配问题。在未来,随着计算机视觉技术的不断发展,模板匹配技术将在更多领域发挥重要作用。原创 2024-11-07 16:05:57 · 3593 阅读 · 0 评论 -
PyTorch图像分类实战——基于ResNet18的RAF-DB情感识别(附完整代码和结果图)
在本文中,我们将详细介绍如何使用PyTorch框架,结合ResNet18模型,进行图像分类任务。这里我们选择了一个情感识别数据集——RAF-DB(Real-world Affective Faces Database),来进行实验。通过本文,你将学习到如何准备数据、构建模型、训练模型、评估模型,并可视化训练过程中的损失曲线。在本文中,我们深入探讨了如何使用PyTorch框架和ResNet18模型,结合RAF-DB数据集来实现图像情感识别。原创 2024-10-31 15:15:15 · 3141 阅读 · 0 评论 -
Halcon实战——基于NCC模板匹配的芯片检测(附源码)
模板匹配的关键之一在于选择合适的模板区域。为了更精确地进行匹配,我们可以通过算子手动绘制一个矩形,定义图像中需要用作模板的区域。在芯片检测任务中,如何定义模板非常关键。芯片上的很多结构可能是规则性的,定义一个合适的模板区域可以显著提高检测效率。通过手动选择芯片的关键区域作为模板,可以减少无关区域的干扰,并提高匹配的精度和速度。NCC模板匹配是一种基于统计相关性的方法。通过计算模板与测试图像对应区域的相关系数,能够准确地定位目标位置。原创 2024-10-19 11:48:48 · 1440 阅读 · 0 评论 -
Python数字图像处理实战——基于OpenCV实现多种滤波器(附完整代码和结果图)
图像处理是计算机视觉中非常重要的一部分,而滤波器是用于增强图像、减少噪声、检测边缘等的核心工具。通过不同的滤波器,我们可以处理图像中的噪声、模糊和细节,从而让图像在后续的处理步骤中更加清晰和准确。均值滤波高斯滤波中值滤波双边滤波自适应滤波Sobel 边缘检测Scharr 滤波本文演示了几种常见滤波器的使用方法及其处理效果。每种滤波器都有各自的优势和适用场景,在实际应用中,选择合适的滤波器能够有效提高图像处理的效果。原创 2024-10-10 21:05:24 · 1538 阅读 · 0 评论 -
【目标检测】根据YOLO格式标签提取和保存标注框目标(附完整代码)
在这篇博文中,我们将讨论如何通过Python实现从YOLO标注文件中提取目标检测框,并将检测出的目标区域从图片中截取并保存为单独的图像文件。原创 2024-10-07 19:17:11 · 2657 阅读 · 0 评论 -
Python人脸识别实战——基于Dlib和OpenCV的人脸识别与关键点检测(附完整代码和结果图)
在这篇博文中,将展示如何使用Python中的Dlib库对人脸进行关键点检测,并利用OpenCV绘制关键点。人脸关键点检测是计算机视觉领域的一项重要任务。我们可以通过检测人脸上的特定位置(如眼睛、鼻子、嘴唇等)来分析面部特征。在这篇文章中,我们将基于Dlib库的预训练模型shape_predictor_68_face_landmarks.dat,结合OpenCV进行人脸关键点的绘制。原创 2024-10-07 13:13:47 · 5203 阅读 · 0 评论