【目标检测】AutoDL服务器训练YOLOv8全过程(保姆级教程)

AutoDL服务器训练YOLOv8全过程



关于作者


作者:小白熊

作者简介:精通python、matlab、c#语言,擅长机器学习,深度学习,机器视觉,目标检测,图像分类,姿态识别,语义分割,路径规划,智能优化算法,数据分析,各类创新融合等等。

联系邮箱:xbx3144@163.com

科研辅导、知识付费答疑、个性化定制以及其他合作需求请联系作者~



前言


  在计算机视觉领域,目标检测技术应用广泛。YOLOv8 因其高效的实时检测能力和优越的性能备受关注,为了更好地利用这一强大的工具,本文将详细介绍如何通过 AutoDL 服务器训练 YOLOv8 模型。无论是服务器的配置、数据集的准备,还是模型的训练与预测,本文将一步步引导你完成整个流程。希望本教程能够帮助你快速上手,并为你的深度学习项目奠定坚实基础。



一、租用服务器


  AutoDL网站:https://www.autodl.com

在这里插入图片描述

  根据自己需要租用服务器,租用完成后,在容器实例处查看租用的服务器

在这里插入图片描述



二、连接服务器


注意:需要提前安装 PyCharm 专业版,社区版不支持连接服务器。


1、添加SSH解释器

在这里插入图片描述


2、添加服务器配置

  复制ssh,分别对应输入主机、端口、用户名,输入完成后点击下一个。

在这里插入图片描述


3、输入密码

  根据提示输入服务器密码,完成连接。

在这里插入图片描述



4、选择解释器

  选择:/root/miniconda3/bin/python3

在这里插入图片描述


5、取消勾选自动上传

  取消勾选“自动上传”,避免自动将项目路径下的所有文件上传至服务器。

在这里插入图片描述



三、上传数据


  注意:由于数据集文件较多,建议先将数据压缩,再上传至服务器,这样会更快。

在这里插入图片描述



四、创建环境

  YOLOv8 项目官方提供的压缩包中包含 requirements.txt 文件,记录了项目的主要依赖库。在终端中执行以下命令:

更新pip库 python -m pip install --upgrade pip
添加清华源 pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
安装依赖库 pip install -r requirements.txt



五、修改.yaml文件

  data.yaml作用是指定数据集信息,包括数据集路径、类别、类别名

在这里插入图片描述

参数解释:

  • train:指定训练集的路径
  • val:指定验证集的路径
  • test:指定测试集的路径
  • nc:表示类别数量
  • names:表示类别名称



六、训练模型

from ultralytics import YOLO
import warnings

warnings.filterwarnings("ignore")

# 训练模型
model = YOLO("/tmp/pycharm_project_381/model/yolov8n.pt")  # 模型文件
model.train(data="/tmp/pycharm_project_381/data/data.yaml", epochs=200, batch=64, device=0)

参数解释:

data:数据集配置文件的路径,即上一步的文件

epochs:训练轮数

batch:批处理大小

device:0表示使用GPU训练,'cpu'表示使用CPU训练


训练完毕后,结果保存在 .\runs\detect\train
其中训练好的模型保存在 .\runs\detect\train\weights
有 last.pt 和 best.pt,一般使用best.pt



七、模型预测

from ultralytics import YOLO
import warnings

warnings.filterwarnings("ignore")

# 预测
model = YOLO("/tmp/pycharm_project_381/runs/detect/train/weights/best.pt") # 训练好的模型
image_path = r'/tmp/pycharm_project_381/data/images/test/  (8).jpg'
model.predict(image_path, device=0, save=True)

参数解释:

  • image_path:表示待预测的图片路径

  • device:0表示使用GPU训练,'cpu'表示使用CPU训练

  • save:Ture表示保存结果,False表示不保存结果



结束语

  通过以上步骤,你已经成功在 AutoDL 服务器上完成了 YOLOv8 训练和预测的全过程。希望本教程能帮助你更好地掌握 YOLOv8 的使用方法,并为你的深度学习项目提供支持。祝你取得优异的训练成果!



### 租赁GPU服务器训练YOLOv5自定义数据集 #### 选择合适的平台和服务提供商 对于希望租赁GPU服务器训练YOLOv5自定义数据集的需求来说,AutoDL是一个值得考虑的选择。该平台不仅提供强大的计算资源,还特别针对深度学习应用进行了优化配置[^1]。 #### 创建账户并完成必要的验证流程 在开始之前,需先访问AutoDL官方网站注册新用户账号。如果当前身份为在校学生,则建议提交相应的证明材料申请教育折扣计划,此举能够有效降低后续使用的成本支出。 #### 配置所需的实例规格 进入控制台后,可以根据实际需求挑选适合的虚拟机模板。考虑到YOLOv5算法对图形处理单元性能的要求较高,在此推荐选用配备NVIDIA Tesla V100或A100系列显卡的产品方案。同时注意设置合理的存储空间大小以便容纳大量的图像样本文件及预训练权重等资料。 #### 远程连接至云端环境开展开发工作 安装好PyCharm社区版或者专业版本以后,利用SSH协议建立安全通道直连已开通的服务节点。通过插件Marketplace获取Paramiko库的支持实现自动化部署脚本功能,简化操作步骤的同时提高工作效率。另外还需确保本地计算机与目标主机之间保持良好的网络通信状态,防止因延迟过高影响交互体验感。 ```bash ssh -i /path/to/private/key.pem username@server_ip_address ``` #### 准备并上传个人定制化数据集合 整理待标注图片素材形成标准格式的数据包(如COCO),随后借助SCP命令将其传输至上一步搭建好的实验环境中去。记得提前规划好目录结构布局,方便后期调用管理。 ```python import os from pathlib import Path data_dir = './datasets' if not os.path.exists(data_dir): os.makedirs(data_dir) # Example of copying files using Python's shutil module instead of SCP directly here for demonstration purposes. for file_name in ['train.txt', 'val.txt']: source_path = f'/local/path/{file_name}' destination_path = str(Path(data_dir, file_name)) with open(source_path, "rb") as src_file: with open(destination_path, "wb") as dest_file: dest_file.write(src_file.read()) ``` #### 编译源码启动模型训练过程 下载官方发布的YOLOv5仓库链接地址,并按照README.md文档指示执行依赖项安装指令。最后编写简单的Python程序入口函数指定超参数选项开启正式的学习周期。 ```yaml # yolov5/data/custom_dataset.yaml example configuration snippet train: ./datasets/train/ val: ./datasets/valid/ nc: 80 # number classes names: [...list your class names...] ``` ```shell git clone https://github.com/ultralytics/yolov5.git cd yolov5 pip install -r requirements.txt python train.py --img 640 --batch 16 --epochs 100 --data custom_dataset.yaml --weights yolov5s.pt ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白熊XBX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值