大模型高级 RAG 检索策略之混合检索

古人云:兼听则明,偏信则暗,意思是要同时听取各方面的意见,才能正确认识事物,只相信单方面的话,必然会犯片面性的错误。

在 RAG(Retrieval Augmented Generation)应用中也是如此,如果我们可以同时从多个信息源中获取信息,那么我们的检索结果会更加全面和准确。今天我们就来介绍高级 RAG 检索策略中的混合检索,并在实际操作中结合 ElaticSearch 和 Llama3 来实现混合检索的效果。

原理介绍

混合检索也叫融合检索,也叫多路召回,是指在检索过程中,同时使用多种检索方式,然后将多种检索结果进行融合,得到最终的检索结果。混合检索的优势在于可以充分利用多种检索方式的优势,弥补各种检索方式的不足,从而提高检索的准确性和效率,下面是混合检索的流程图:

图片

  • 首先是问题查询,这一过程的设计可以简单也可以复杂,简单的做法是直接将原始查询传递给检索器,而复杂一点的做法是通过 LLM(大语言模型)为原始查询生成子查询或相似查询,然后再将生成后的查询传递给检索器

  • 然后是检索器执行检索,检索可以在同一数据源上进行不同维度的检索,比如向量检索和关键字检索,也可以是在不同数据源上进行检索,比如文档和数据库

  • 检索过程从原来一个问题变成了多个问题检索,如果串行执行这些检索,那么检索的效率会大大降低,所以我们需要并行执行多个检索,这样才可以保证检索的效率

  • 最后是融合检索结果,在这一过程中,我们需要对检索结果进行去重,因为在检索的多个结果中,有些结果可能是重复的,同时我们还需要对检索结果进行排序,排序方法一般采用 RRF(倒数排名融合),选出最匹配的检索结果

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN

环境准备

为了更好地了解混合检索的原理和实现,今天我们将通过 LLM 应用框架LlamaIndex[1],结合 Meta 最新开源的模型Llama3[2]和开源搜索引擎ElasticSearch[3],来实现一个高效的混合检索系统。在 RAG 检索过程中除了需要用到 LLM 的模型外,还需要用到 Embedding 模型和 Rerank 模型,这些模型我们也统一使用本地部署的模型,这样可以更好地了解各种模型的使用和部署。

LlamaIndex 集成 Llama3

首先是进行 Llama3 的本地化部署,有多种工具可以部署 Llama3,比如 Ollama[4] 或 vllm[5],而且这些工具都提供了兼容 OpenAI 的 API 接口,vllm 的部署方式可以参考我之前的文章

部署完成后,我们再看如何在 LlamaIndex 中集成 Llama3。虽然 LlamaIndex 提供了自定义 LLM[7]的功能,但继承自CustomeLLM类来实现自定义 LLM 的方式比较复杂,需要从头实现completechat等方法。这里推荐 LlamaInex 另外一个创建自定义 LLM 的方法,即使用OpenAILike类,这个类是对 OpenAI 类进行轻量级封装,只要有兼容 OpenAI 的 API 服务,就可以直接使用该类来获得 OpenAI LLM 的功能。

要使用OpenAILike类,首先需要安装相关依赖包pip install llama-index-llms-openai-like,然后使用以下代码进行集成:

from llama_index.llms.openai_like import OpenAILike
from llama_index.core.base.llms.types import ChatMessage, MessageRole
from llama_index.core import PromptTemplate

llm = OpenAILike(
    model="llama3",
    api_base="you-local-llama3-api",
    api_key="fake_key",
    is_chat_model=True,
)
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
response = llm.chat(
    [
        ChatMessage(
            role=MessageRole.SYSTEM,
            content="You are a helpful assistant.",
        ),
        ChatMessage(
            role=MessageRole.USER,
            content=prompt_tmpl.format(movie_name="Avengers"),
        ),
    ]
)
print(f"response: {response}")

# 显示结果
response: assistant: Here are some movie recommendations that are similar to the Avengers franchise:

1. **Guardians of the Galaxy** (2014) - Another Marvel superhero team-up film, with a fun and quirky tone.
2. **The Justice League** (2017) - A DC Comics adaptation featuring iconic superheroes like Superman, Batman, Wonder Woman, and more.
......
  • OpenAILike对象中,参数model为模型名称,api_base为本地 Llama3 的 API 服务地址

  • api_key可以随便填写,但不能不传这个参数,否则会出现连接超时的错误

  • is_chat_model为是否是 chat 模型,因为 OpenAI 的模型分为 chat 模型和非 chat 模型

  • 然后我们使用 LLM 对象进行了一个普通的对话,结果可以正常返回

LlamaIndex 集成 ElasticSearch

在 RAG 应用中向量数据库是必不可少的一项功能,而 Elasticsearch 能够存储各种类型的数据,包括结构化和非结构化数据,并且支持全文检索和向量检索。

部署完 ElasticSearch 后,还需要安装 LlamaIndex 的 Elasticsearch 依赖包pip install llama-index-vector-stores-elasticsearch,然后使用以下代码示例就可以集成 ElasticSearch:

from llama_index.vector_stores.elasticsearch import ElasticsearchStore

es = ElasticsearchStore(
    index_name="my_index",
    es_url="http://localhost:9200",
)
  • index_name 是 ElasticSearch 的索引名称,es_url 是 ElasticSearch 服务的地址

自定义 Embedding 和 Rerank 模型

在高级 RAG 的检索过程中,需要用到 Embedding 模型来对文档和问题进行向量化,然后使用 Rerank 模型对检索结果进行重排序。同样有很多工具可以部署这 2 种模型,比如TEI[9] 和 Xinference[10]等。

Embedding 模型的启动命令如下,这里我们使用了BAAI/bge-base-en-v1.5[12]这个 Embeddings 模型,服务端口为 6006:

text-embeddings-router --model-id BAAI/bge-base-en-v1.5 --revision refs/pr/4 --port 6006

Rerank 模型的启动命令如下,这里我们使用了BAAI/bge-reranker-base[13]这个 Rerank 模型,服务端口为 7007:

text-embeddings-router --model-id BAAI/bge-reranker-base --revision refs/pr/4 --port 7007

多种检索方式

数据入库

在介绍检索之前,我们先来了解下 LlamaIndex 如何使用 ElasticSearch 对文档进行解析和入库,这里的测试文档还是用维基百科上的复仇者联盟[14]电影剧情,示例代码如下:

from llama_index.vector_stores.elasticsearch import ElasticsearchStore
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llms import CustomEmbeddings

store = ElasticsearchStore(
    index_name="avengers",
    es_url="http://localhost:9200",
)
documents = SimpleDirectoryReader("./data").load_data()
node_parser = SentenceSplitter(chunk_size=256, chunk_overlap=50)
storage_context = StorageContext.from_defaults(vector_store=store)
embed_model = CustomEmbeddings(
    model="BAAI/bge-base-en-v1.5", url="http://localhost:6006"
)
VectorStoreIndex.from_documents(
    documents,
    transformations=[node_parser],
    embed_model=embed_model,
    storage_context=storage_context,
)
  • 首先定义了一个 ElasticsearchStore 对象来连接 ElaticSearch 本地服务

  • 然后使用 SimpleDirectoryReader 加载本地的文档数据

  • 使用 SentenceSplitter 对文档进行分块处理,应为 TEI 的输入 Token 数最大只能 512,所以这里的 chunk_size 设置为 256,chunk_overlap 设置为 50

  • 构建 StorageContext 对象,指定向量存储为之前定义的 ElasticsearchStore 对象

  • 创建一个自定义 Embeddings 对象,使用的是 TEI 部署的 Embeddings 模型服务,

  • 最后使用 VectorStoreIndex 对象将文档数据入库

当执行完代码后,可以在 ElasticSearch 的avengers索引中看到文档数据,如下图所示:

图片

全文检索

数据入库后,我们再来看下如何在 LlamaIndex 中使用 Elasticsearch 进行全文检索。

全文检索是 Elasticsearch 的基本功能,有时候也叫关键字检索,是指根据关键字在文档中进行检索,支持精确匹配,同时高级功能也支持模糊匹配、同义词替换、近义词搜索等。在 LlamaIndex 中使用 Elasticsearch 进行全文检索的代码如下:

from llama_index.vector_stores.elasticsearch import AsyncBM25Strategy
from llama_index.core import Settings

text_store = ElasticsearchStore(
    index_name="avengers",
    es_url="http://localhost:9200",
    retrieval_strategy=AsyncBM25Strategy(),
)
Settings.embed_model = embed_model
text_index = VectorStoreIndex.from_vector_store(
    vector_store=text_store,
)
text_retriever = text_index.as_retriever(similarity_top_k=2)
  • 这里重新定义了一个 ElasticsearchStore 对象,但这次指定了检索策略为 BM25,如果要使用全文检索则必须指定这个检索策略

  • ElasticsearchStore对象作为参数来创建VectorStoreIndex 对象

  • 最后通过VectorStoreIndex对象创建全文检索的检索器,这里设置检索结果的数量为 2

BM25 是一种在信息检索领域广泛采用的排名函数,主要用于评估文档与用户查询的相关性。该算法的基本原理是将用户查询(query)分解为若干语素(qi),然后计算每个语素与搜索结果之间(document D)的相关性。通过累加这些相关性得分,BM25 最终得出查询与特定文档之间的总相关性评分。这种检索策略在现代搜索引擎中非常常见。

向量检索

我们再来了解 LlamaIndex 中如何使用 Elasticsearch 进行向量检索。

向量检索是一种基于机器学习的信息检索技术,它使用数学向量来表示文档和查询。在 LlamaIndex 中使用 Elasticsearch 进行向量检索有 2 种检索策略,分别是DenseSparse,这两种策略的区别在于向量的稠密度,Dense检索的号码每一位都是有用的数字,就像一个充满数字的电话号码,而Sparse检索的号码大部分都是零,只有少数几个位置有数字,就像一个电话号码大部分是零,只有几个位置有数字。如果需要更精细、更复杂的检索方法,用Dense检索,如果需要简单快速的方法,用Sparse检索。ElasicsearchStore类默认的检索策略是Dense,下面是向量检索的代码示例:

from llama_index.vector_stores.elasticsearch import AsyncDenseVectorStrategy, AsyncSparseVectorStrategy

vector_store = ElasticsearchStore(
    index_name="avengers",
    es_url="http://localhost:9200",
    retrieval_strategy=AsyncDenseVectorStrategy(),
    # retrieval_strategy=AsyncSparseVectorStrategy(model_id=".elser_model_2"),
)
Settings.embed_model = embed_model
vector_index = VectorStoreIndex.from_vector_store(
    vector_store=vector_store,
)
vector_retriever = vector_index.as_retriever(similarity_top_k=2)
  • 向量检索的代码和全文检索的代码类似

  • 如果是使用Dense检索策略,可以指定retrieval_strategy=AsyncDenseVectorStrategy(),也可以不指定retrieval_strategy参数

  • 如果是使用Sparse检索策略,需要指定retrieval_strategy=AsyncSparseVectorStrategy(model_id=".elser_model_2"),这里需要额外部署 ElasticSearch 的 ELSER 模型[16]

混合检索

定义好了 2 种检索器后,我们再来了解如何将这些检索进行融合,在 LlamaIndex 的 ElasticsearchStore 类中提供了混合检索的方法,示例代码如下:

from llama_index.vector_stores.elasticsearch import AsyncDenseVectorStrategy

vector_store = ElasticsearchStore(
    index_name="avengers",
    es_url="http://localhost:9200",
    retrieval_strategy=AsyncDenseVectorStrategy(hybrid=True),
)
  • 这里的检索策略还是使用Dense检索策略,但是指定了hybrid=True参数,表示使用混合检索

设置了混合检索策略后,在融合检索结果时会自动使用 Elasicsearch 的 RRF 功能。

RRF(倒数排名融合) 是一种融合检索算法,用于结合多个检索结果列表。每个结果列表中的每个文档被分配一个分数,分数基于文档在列表中的排名位置。该算法的基本思想是,通过对多个检索器的结果进行融合,来提高检索性能。

但在 Elasticsearch 的免费版本中,这个功能是不可用的:

图片

因此我们需要自己实现 RRF 功能,RRF 的论文可以看这里[17],下面是 RRF 的代码实现:

from typing import List
from llama_index.core.schema import NodeWithScore

def fuse_results(results_dict, similarity_top_k: int = 2):
    """Fuse results."""
    k = 60.0
    fused_scores = {}
    text_to_node = {}

    # 计算倒数排名分数
    for nodes_with_scores in results_dict.values():
        for rank, node_with_score in enumerate(
            sorted(
                nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True
            )
        ):
            text = node_with_score.node.get_content()
            text_to_node[text] = node_with_score
            if text not in fused_scores:
                fused_scores[text] = 0.0
            fused_scores[text] += 1.0 / (rank + k)

    # 结果按分数排序
    reranked_results = dict(
        sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
    )

    # 结果还原为节点集合
    reranked_nodes: List[NodeWithScore] = []
    for text, score in reranked_results.items():
        reranked_nodes.append(text_to_node[text])
        reranked_nodes[-1].score = score

    return reranked_nodes[:similarity_top_k]
  • 方法的参数results_dict是所有检索器的检索结果集合,similarity_top_k是最相似的结果数量

  • 假设results_dict的值是{'full-text': [nodes], 'vector': [nodes]},这个方法方法的作用是将所有的检索结果节点进行融合,然后选出最相似的similarity_top_k个节点

  • 方法开头是初始化一些变量,k 用于计算倒数排名分数,fused_scores 用于存储节点文本和融合后分数的映射,text_to_node 用于存储节点文本到节点的映射

  • 然后是计算每个节点的倒数排名分数,先将 results_dict 中的每个节点按照分数进行排序,然后计算每个节点的倒数排名分数,将结果保存到 fused_scores 中,同时将节点文本和节点的关系保存到 text_to_nodes

  • 接着再对 fused_scores 按照倒数排名分数进行排序,得到 reranked_results

  • 然后根据 reranked_results 将结果还原成节点集合的形式,并将节点的分数设置为融合后的分数,最终结果保存到 reranked_nodes 列表中

  • 最后返回最相似的结果,返回 reranked_nodes 列表中的前 similarity_top_k 个节点

定义好融合函数后,我们再定义一个方法来执行多个检索器,这个方法返回的结果就是融合函数的参数 results_dict,示例代码如下:

from tqdm.asyncio import tqdm

def run_queries(query, retrievers):
    """Run query against retrievers."""
    tasks = []
    for i, retriever in enumerate(retrievers):
        tasks.append(retriever.aretrieve(query))

    task_results = await tqdm.gather(*tasks)

    results_dict = {}
    for i, query_result in enumerate(task_results):
        results_dict[(query, i)] = query_result

    return results_dict
  • 方法的参数query是原始问题,retrievers是多个检索器的集合

  • 将问题传给每个检索器,构建异步任务列表tasks

  • 然后使用await tqdm.gather(*tasks)并行执行所有的检索器,并行执行可以提高检索效率

  • 最后将检索结果保存到results_dict中,返回results_dict

因为我们使用了异步方式进行检索,原先的CustomEmbeddings中的方法也需要修改,示例代码如下:

+import asyncio

-    def _aget_query_embedding(self, query: str) -> Embedding:
-        return get_embedding(text=query, model=self._model, url=self._url)
+    async def _aget_query_embedding(self, query: str) -> Embedding:
+        loop = asyncio.get_event_loop()
+        return await loop.run_in_executor(
+            None, get_embedding, query, self._model, self._url
+        )

然后我们构建一个融合检索器来将上面定义的方法组合到一起,示例代码如下:

from typing import List
from llama_index.core import QueryBundle
from llama_index.core.retrievers import BaseRetriever
from llama_index.core.schema import NodeWithScore
import asyncio

class FusionRetriever(BaseRetriever):
    """Ensemble retriever with fusion."""

    def __init__(
        self,
        retrievers: List[BaseRetriever],
        similarity_top_k: int = 2,
    ) -> None:
        """Init params."""
        self._retrievers = retrievers
        self._similarity_top_k = similarity_top_k
        super().__init__()

    def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """Retrieve."""
        results = asyncio.run(
            run_queries(query_bundle.query_str, self._retrievers)
        )
        final_results = fuse_results(results, similarity_top_k=self._similarity_top_k)
        return final_results
  • 这个融合检索器的类继承自BaseRetriever类,重写了_retrieve方法

  • 构造方法中的参数retrievers是多个检索器的集合,similarity_top_k是最相似的结果数量

  • _retrieve方法中,调用了run_queries方法来获取检索结果results

  • 然后调用了fuse_results方法来融合检索结果并返回

我们来看融合检索器运行后的检索结果,代码示例如下:

fusion_retriever = FusionRetriever(
    [text_retriever, vector_retriever], similarity_top_k=2
)
question = "Which two members of the Avengers created Ultron?"
nodes = fusion_retriever.retrieve(question)
for node in nodes:
    print("-" * 50)
    print(f"node content: {node.text[:100]}...")
    print(f"node score: {node.score}\n")

# 显示结果
-----------------------------------------------node content: In the Eastern European country of Sokovia, the Avengers—Tony Stark, Thor, Bruce Banner, Steve Roger...
node score: 0.03306010928961749

-----------------------------------------------node content: Thor departs to consult with Dr. Erik Selvig on the apocalyptic future he saw in his hallucination, ...
node score: 0.016666666666666666
  • 首先定义了一个 FusionRetriever 对象,传入了全文检索器和向量检索器,同时设置了最相似的结果数量为 2

  • 然后传入了一个问题,获取检索结果

从结果中可以看到,检索结果节点返回的分数是经过 RRF 融合后的分数,分数值比较低,与原始的 Rerank 分数值不太匹配,这时我们可以使用 Rerank 模型来对检索结果进行重排序。

from llama_index.core.query_engine import RetrieverQueryEngine

rerank = CustomRerank(
    model="BAAI/bge-reranker-base", url="http://localhost:7007", top_n=2
)
Settings.llm = llm
query_engine = RetrieverQueryEngine(fusion_retriever, node_postprocessors=[rerank])
response = query_engine.query(question)
print(f"response: {response}")
for node in response.source_nodes:
    print("-" * 50)
    print(f"node content: {node.text[:100]}...")
    print(f"node score: {node.score}\n")

# 显示结果
response: Tony Stark and Bruce Banner.
-----------------------------------------------node content: In the Eastern European country of Sokovia, the Avengers—Tony Stark, Thor, Bruce Banner, Steve Roger...
node score: 0.8329173

-----------------------------------------------node content: Thor departs to consult with Dr. Erik Selvig on the apocalyptic future he saw in his hallucination, ...
node score: 0.24689633
  • CustomRerank类是一个自定义的 Rerank 类

  • 在系统设置中设置了 LLM 模型来生成答案

  • 通过混合检索器构建查询引擎,并在node_postprocessors参数中传入了 Rerank 模型,表示在检索结果后使用 Rerank 模型对检索结果进行重排序

  • 最后传入问题,获取检索结果

从结果中可以看到,检索结果节点返回的分数是经过 Rerank 模型重排序后的分数,分数值比较高,这样我们的混合检索系统就构建完成了。

总结

混合检索是一种在 RAG 应用中常用的检索策略,通过融合多种检索方式,可以提高检索的准确性和效率。今天我们通过 LlamaIndex 的代码实践,了解了构建混合检索系统的流程,同时也学习了如何使用 Llama3 和 ElasticSearch 来实现混合检索的效果,以及混合检索中一些常见的检索策略和排序算法。

关注我,一起学习各种人工智能和 AIGC 新技术,欢迎交流,如果你有什么想问想说的,欢迎在评论区留言。

用通俗易懂的方式讲解系列

参考:

[1]LlamaIndex: https://www.llamaindex.ai/
[2] Llama3: https://llama.meta.com/llama3/
[3]ElasticSearch: https://www.elastic.co/cn/elasticsearch/
[4]Ollama: _https://ollama.com/
[5]vllm: https://github.com/vllm-project/vllm
[7]自定义 LLM: https://docs.llamaindex.ai/en/stable/module_guides/models/llms/usage_custom/
[9] TEI: https://github.com/huggingface/text-embeddings-inference
[10]Xinference: https://inference.readthedocs.io/en/latest/
[12]BAAI/bge-base-en-v1.5: https://huggingface.co/BAAI/bge-base-en-v1.5
[13]BAAI/bge-reranker-base: https://huggingface.co/BAAI/bge-reranker-base
[14]复仇者联盟: https://en.wikipedia.org/wiki/Avenger

[16] ELSER 模型: https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-elser.html
[17] 这里: https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf

实现大模型RAG(Retrieval Augmented Generation)主要包括**数据准备阶段和应用阶段**两个关键环节。具体步骤如下: 1. **数据准备阶段**: - **数据提取**:首先需要确定并提取适用于特定领域的私域数据,这些数据可以是PDF文件、数据库内容或其他形式的私有知识库。 - **文本分割**:将提取出的文档进行分块处理,以便于后续的处理和检索。 - **向量化**:对分割后的文本块进行向量化操作,即将文本转换为机器能够高效处理的数值表示形式。 - **数据入库**:处理好的数据需要构建索引并存入向量数据库中,为接下来的检索任务做准备。 2. **应用阶段**: - **用户提问**:当用户提出问题时,同样需要将这个查询向量化。 - **数据检索**:利用向量数据库的检索能力,找出与用户提问相似度最高的k个文档片段。 - **注入Prompt**:将检索到的结果结合用户的原始提问,按照一定的Prompt模板组装成一个完整的输入提示给大语言模型。 - **LLM生成答案**:大语言模型根据提供的Prompt生成最终的回答。 此外,还需要考虑如何优化数据的准备过程,比如选择适合的向量化技术(如使用词嵌入模型)以及如何设计高效的检索算法来快速准确地从大量数据中找到相关信息。同时,在应用阶段,需要精心设计Prompt模板,以便大模型能更好地理解问题和检索到的信息,从而给出更准确的回答。 值得一提的是,RAG架构的优势在于它结合了大模型的强大语言理解和生成能力以及向量检索系统的高效信息获取能力,使得大模型能够在专业场景或行业细分领域中提供更加精准和丰富的回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值