HuggingFace昨天开源了一个名为"speech-to-speech"的项目,这是一个开源的、模块化的GPT-4级语音对话系统。
这个项目集成了多个大家常用的AI模型,实现了从语音输入到语音输出的端到端对话能力,无需文本作为中间媒介。
项目架构
S2S 采用级联式管道结构,包含以下四个主要组件:
1.语音活动检测(VAD):使用Silero VAD v5模型
2.语音识别(STT):使用Whisper模型,包括其蒸馏版本
3.语言模型(LM):可使用Hugging Face Hub上的任何指令型模型
4.语音合成(TTS):使用Parler-TTS模型
模块化设计
项目的一大特点是其高度模块化的设计。每个组件都可以根据需要灵活替换或修改:
VAD模块使用Silero的开源实现
STT模块可以使用任何Whisper检查点,如Distil-Whisper等
LM模块完全可替换,只需修改Hugging Face模型ID即可
TTS模块使用Parler-TTS,但可以使用不同的检查点包括多语言模型
代码结构也便于修改,每个组件都被实现为一个类,可以根据特定需求重新实现。
技术亮点
1. 集成了多个前沿AI模型,实现端到端的语音对话
2. 高度模块化的设计,便于替换和定制各个组件
3. 支持服务器/客户端和本地两种运行模式
4. 提供Docker容器支持,方便部署
5. 丰富的命令行参数,灵活可控
使用方法
该项目支持两种运行方式:
1.服务器/客户端模式:模型在服务器上运行,音频通过客户端流式传输
2.本地模式:在本地机器上运行整个管道
对于服务器模式,还提供了Docker容器支持,方便部署。
项目还提供了丰富的命令行参数,可以灵活控制各个模块的行为,如模型选择、生成参数等。
结语
这个项目为构建开放、可定制的语音对话系统提供了一个很好的起点。研究人员和开发者可以基于此进行进一步的改进和应用开发,推动语音交互技术的发展。
项目链接
https://github.com/huggingface/speech-to-speech
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。