在开始今天的文章前,首先抛出一个问题:为什么要做数据融合?可以思考下。
结合当下数据对接来看,数据要素市场还有待发展、多源数据融合应用不足、多方数据对接困难、数据共享和互通不足等等问题层出不穷,造成了数据重复采集和难以复用的浪费。因此,数据融合的出现对解决这一类问题提供了有效的解决方案。数据融合能够有效地提高数据集成和数据利用的效率。
本文将从数据融合基础概念入手,介绍其定义、类型和方法,进一步解释怎么确保数据融合的准确性和可靠性。
数据融合概念
数据融合(Data Fusion)指的是将来自不同来源、不同格式或不同结构的数据集成到一个统一的数据模型或数据集中的过程。其目的是通过整合多样化的数据,提高数据的完整性、准确性和可用性,以支持更深入的分析、决策制定或应用开发。
涉及领域:
1.数据来源多样性:融合的数据可以来自多个不同的数据源,例如不同的数据库、文件系统、传感器、网络等。
2.数据格式和结构差异:融合的数据可能具有不同的格式(如文本、数字、图像、视频等)和不同的数据结构(如关系型数据、半结构化数据、非结构化数据等)。
3.融合方法:数据融合可以通过各种方法实现,包括传统的ETL(提取、转换、加载)过程、数据集成技术、机器学习和数据挖掘方法等。
4.应用领域:数据融合在许多领域都有广泛应用,包括商业智能和数据分析、医疗健康、智能城市、军事情报分析、环境监测等。
数据融合的类型
1.结构化数据融合:多个数据库中的表格数据或者关系型数据的融合,通常通过主键和外键进行关联。
2.半结构化数据融合:包含标签、标记或者标识符的数据,例如XML或者JSON 格式的数据,融合可以通过标签或者标识符进行。
3.非结构化数据融合:包含文本、图像或者视频等的非格式化数据,通常通过自然语言处理或者计算机视觉技术进行处理和融合。
数据融合的挑战和方法
数据融合的挑战:
1.数据质量问题:来源数据的不一致性、不完整性或者不准确性可能会影响到融合后数据的质量和可信度。
2.数据安全性和隐私问题:不同数据源之间的数据安全性和隐私保护问题,需要采取安全措施保障数据的安全性。
3.数据一致性和完整性:确保融合后的数据集合符合逻辑上的一致性和完整性,避免数据冗余或者遗漏。
数据融合的方法:
1.ETL(提取、转换、加载)过程:包括从不同数据源提取数据、将数据转换为统一格式或结构,最后加载到目标系统的过程。
2.数据集成和联合:将多个数据源中的数据集成到一个统一的数据模型中,使得数据可以一起进行查询和分析。
3.数据挖掘和机器学习技术:使用数据挖掘和机器学习算法进行数据融合,识别模式和关系,从而生成更高质量的融合数据。
数据融合的注意事项
数据融合的关键环节:
在数据融合的过程中,我们经常面临着数据质量不一致、缺失、重复等问题,这些问题如果不及时发现和处理,将严重影响到数据的可靠性和价值。因此,实时监控数据质量、及时发现和处理异常成为保证数据融合结果准确性和可靠性的重要环节。
为了实现实时监控数据质量,并及时发现和处理异常,我们可以采用以下几种有效的措施:
1.数据质量监控指标的制定和跟踪
在数据融合过程中,我们需要明确关键的数据质量指标,并制定相应的监控策略。例如,可以设定数据完整性、准确性、一致性和唯一性等指标,并通过数据质量监控系统不断跟踪和实时采集这些指标的信息。根据实际情况,我们可以使用数据质量评估模型或者规则引擎来进行数据质量评估,及时发现数据异常情况。
2.异常检测和处理机制
通过引入异常检测和处理机制,可以实时监控和识别数据质量异常。一方面,可以建立异常模型或者规则,通过对历史数据和实时数据的比对,检测出与正常数据分布相差较大的异常数据,并触发相应的预警机制。另一方面,针对异常情况,需要及时采取合理的处理措施,如数据修复、数据清洗或者数据重采集等,以保证数据质量的稳定性和可靠性。
3.实时数据监测与反馈机制
实时数据监测与反馈机制是保障数据质量的重要手段。通过实时监测系统,我们可以及时收集、整理和分析数据质量的信息,并将相关信息以可视化的形式呈现给相关的决策者或者使用者。通过数据质量的可视化监控,能够让相关人员及时了解到数据质量的情况,进而采取相应的措施。
4.协同合作与知识共享
在数据融合过程中,不同团队或者部门之间需要进行有效的协同合作与知识共享。通过建立数据质量管理平台或者工作流程,可以使得数据质量问题能够得到及时的反馈和处理。同时,团队成员之间的沟通与合作也能够促进数据质量的提升。
总之,在数据融合过程中,实时监控数据质量及时发现和处理异常是确保数据融合结果准确性和可靠性的关键环节。通过制定合理的数据质量监控指标,建立异常检测和处理机制,实施实时数据监测与反馈机制,以及加强协同合作与知识共享,我们可以有效地保障数据质量,提高数据融合的效率和价值。
FineDataLink是一款低代码/高时效的数据集成平台,它不仅提供了数据清理和数据分析的功能,还能够将清理后的数据快速应用到其他应用程序中。FineDataLink的功能非常强大,可以轻松地连接多种数据源,包括数据库、文件、云存储等,而且支持大数据量。此外,FineDataLink还支持高级数据处理功能,例如数据转换、数据过滤、数据重构、数据集合等。使用FineDataLink可以显著提高团队协作效率,减少数据连接和输出的繁琐步骤,使整个数据处理流程更加高效和便捷。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。