Agent和multiAgent系统发展的速度比我们想象的快,将会有越来越多的Agent加入到网络中,然而,异构的LLM 之间的通信效率低下,严重制约了 AI Agent网络的规模化应用。来自牛津大学的研究团队提出的 Agora 协议,为解决这一难题提供了创新方案。
化解 Agent 通信三难困境
Agora 协议旨在实现 LLM 代理之间的高效通信,使 diverse Agent能够以较低成本进行交互。它兼容现有的多代理框架,如 Camel AI 、LangChain 和Swarm 等。Agora 协议的核心优势在于巧妙解决了"Agent Communication Trilemma"(Agent通信三难问题),即同时确保通信的多样性、效率和可移植性。这个问题长期困扰着 AI 研究者,Agora 通过创新的方法实现了三者的平衡。
核心实现步骤
Agora 协议通过四个关键步骤实现高效通信:
1.自然语言初始交互:利用所有 LLM 都能理解自然语言的特点,作为初始交互方式。这确保了通信的多样性和灵活性。
2.协商共享协议:两个未曾交互的Agent使用自然语言协商出共享协议。这一步骤使用了基于语义相似度的协议匹配算法,确保不同Agent能快速达成共识。
3.LLM 编写routine(例行)程序:一旦Agent就结构化数据交换达成一致,LLM 会编写例行程序。这些程序是用Agent选择的语言(如 Python 或JavaScript)编写的简单脚本,通常包含数据序列化、解析和基本错误处理功能。
4.高效数据交换:使用预先协商的协议和编写的routine程序,Agent们可以高效地交换结构化数据,大大减少了对 LLM 的调用次数。
实现亮点
-
协议识别:Agent使用描述协议的 TXT 文件的 SHA1 哈希值来识别正在使用的协议。这个 TXT 文件包含了协议的详细规范,包括数据格式、字段定义和通信流程。
-
失败处理机制:如果例行程序失败,系统会启动多级故障恢复机制。首先,LLM 会尝试修复或重写失败的程序。如果修复失败,LLM 会接管并使用自然语言发送查询或回复,确保通信不会中断。
-
协议复用与优化:经协商同意的协议可以在其他Agent间共享和重复使用。系统会维护一个协议库,随着使用频率的增加,popular 的协议会被优化和标准化。
-
去中心化设计:Agora 采用完全去中心化模型,无需权威节点。每个Agent都可以独立协商和执行协议,增强了系统的鲁棒性和可扩展性。
实际效果与案例
Agora 团队进行了一项涉及 100 个Agent的演示,这些Agent配备了各种 LLM(如 GPT-3.5 、LLAMA 、BERT 等)和数据库技术。在一个多语言翻译任务中,Agora 协议展现了其强大的协调能力:
-
中文文本输入给中文 LLM Agent
-
中文 LLM 使用 Agora 协议与英文 LLM 协商翻译协议
-
翻译后的英文文本再传递给法语 LLM 进行二次翻译
-
最终输出法语文本
整个过程中,Agora 协议确保了高效的跨语言模型通信,将任务完成时间从传统方法的几分钟缩短到了几秒钟,同时将成本降低了约 5倍。
小结
Agora 协议为构建全球异构Agent网络的有效探索,拥有广阔的应用前景。目前,Agora 团队正在开发下一个版本的协议,计划增加更多适用于实际应用场景的功能,如动态协议适应、安全通信层和更高级的失败恢复机制。
可以说,Agora 协议的提出和实施,虽然不一定会是最终的Agent网络的标准,但这样的探索必将会是Agent网络向Agent互联网演进的里程碑代表。
项目地址:https://agoraprotocol.org/
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。