ChunkRAG文本分块排序新思路:兼看大模型与知识图谱结合用于推荐框架KGLA

本文主要介绍2个工作,一个是RAG分块进展ChunkRAG,LLM驱动的块过滤方法,称为ChunkRAG,通过在块级别评估和过滤检索到的信息来增强RAG系统,该方法利用语义分块将文档划分为连贯的部分,并使用基于LLM的相关性评分来评估每个块与用户查询的对齐情况。

另一个是知识图谱与大模型结合用于推荐的工作,KGLA框架,将知识图谱中的结构化信息转换为文本,并融入到用户代理的决策过程中,使得用户代理能够更好地理解和模拟用户的偏好,从而提高推荐系统的准确性和效果。通过在模拟阶段的自主交互和反思,以及在排名阶段的候选物品评估,算法能够生成更符合用户偏好的推荐列表。

二、RAG分块进展ChunkRAG

我们先来看看RAG进展,《ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems》,https://arxiv.org/pdf/2410.19572,提出LLM驱动的块过滤方法,称为ChunkRAG,通过在块级别评估和过滤检索到的信息来增强RAG系统,该方法利用语义分块将文档划分为连贯的部分,并使用基于LLM的相关性评分来评估每个块与用户查询的对齐情况。

先说具体结论,这个工作所声称的优点,其实是个集成,例如,Chunk-Level Filtering,在生成阶段之前对检索到的信息进行块级别的评估和过滤,显著减少了无关信息和幻觉的产生;Semantic Chunking通过语义分块将文档划分为连贯的部分,确保每个块包含密切相关的内容,提高了检索操作的效率。LLM-Based Relevance Scoring利用大模型对每个块的相关性进行评估,能够过滤掉不相关或弱相关的块;Self-Reflection and Critic LLM采用自我反思和批评LLM的双重评分机制,提高了评分的准确性和可靠性;Dynamic Threshold Determination使用动态阈值来确定块的相关性,而不是固定的阈值,进一步提高了过滤效果;Hybrid Retrieval and Re-Ranking结合了BM25检索器和Cohere的重新排序模型,提升了检索和排序的效果。

我们可以其中的几点。

1、具体执行逻辑

我们可以从图2中找到对应的技术路线,如下:

在这里插入图片描述

首先是建库部分:

1)语义分块:首先,将文档分解为语义上相关的块。这一步骤确保了每个块包含紧密相关的信息,提高了检索操作的效率。

2)句子分词:使用NLTK的sent_tokenize函数将每个文档分割成句子。这一步骤使得文本可以在更细粒度的层次上进行处理。

3)句子嵌入生成:使用OpenAI的text-embedding-3-small模型生成句子嵌入。每个句子被转换为一个数值向量表示,捕捉其语义含义。

4)相似度计算:计算连续句子之间的余弦相似度。相似度分数帮助确定连续句子在语义上的相关性。如果相似度分数低于预定义的阈值(例如,0.7),则表示主题发生了变化。

5)块边界识别:基于相似度分数,在相似度低于阈值的点识别块边界,这表明主题的更改。

6)块创建:根据识别的边界将句子分组成块。每个块保持在最大长度(例如,500个字符)以内,以确保语义的连贯性和可管理性。

7)向量存储创建:为了便于基于相似度的检索,将块嵌入存储在向量存储中。

其次是检索部分

1)检索器初始化:初始化一个检索器执行基于相似度的搜索。该检索器比较查询的嵌入与存储的块的嵌入,找到最相关的块。

2)查询重写:为了提高检索性能,用户查询被重写而不改变其原始意图。使用LLM(例如GPT-4o-mini)重写查询。

然后是过滤排序部分

1)初始过滤方法:在计算成本高的评分操作之前,应用初始过滤方法以提高效率和确保相关性。包括去除冗余块和按语义相似度排序剩余块。

2)高级LLM基相关性评分:为了更准确地评估每个块的相关性:

首先,初始LLM评分:主要LLM使用预定义的提示为每个块分配初始相关性分数;然后,自我反思者LLM反思其初始分数并在必要时进行调整,以捕捉潜在的误判;接着,批评LLM评分:第二个LLM(称为批评者)独立评估每个块并分配其自己的分数以验证初始评估;最终分数计算时,通过平均初始、反映和批评分数来获得最终相关性分数,以提高准确性和可靠性。

3)动态阈值确定:不使用固定阈值,而是通过LLM分析最终分数分布并建议块相关性的最佳阈值;

4)混合检索和重排:并行实现BM25检索器,以捕获基于关键词的检索。BM25检索器与等权重的集成方法(各0.5)结合使用。应用Cohere的重排模型对块进行排名,以处理“丢失在中间”的问题。

最后是答案生成部分

为了生成用户的最终答案,过滤后的块被编译成LLM使用的上下文,LLM基于编译的上下文和用户的原始问题生成简洁的答案,使用确保答案仅基于提供的上下文的提示。

但是,还是要做一些思考,这种方式很集成,方法高度依赖于块分割的有效性和用于块相关性评估的嵌入质量,主要划分错误可能会产生不相关的数据;并且在计算成本上,在初始层次上整合LLM和批评LLM评估的成本较高,特别是在将该方法扩展到更大数据集或在实时系统中部署时,一套流程打下来,其实很慢。

二、知识图谱与大模型结合用于推荐

当前的语言代理模拟未能理解用户和物品之间的关系,导致用户画像不准确和推荐效果不佳。之前的工作当中,推荐系统中使用KG表示知识,并通过图神经网络获取图嵌入,然后与用户嵌入结合。然而,这些方法主要应用于问答任务。

最近,来自亚马逊的工作《Knowledge Graph Enhanced Language Agents for Recommendation》(https://arxiv.org/pdf/2410.19627),提出KGLA框架,将知识图谱中的结构化信息转换为文本,并融入到用户代理的决策过程中,使得用户代理能够更好地理解和模拟用户的偏好,从而提高推荐系统的准确性和效果。通过在模拟阶段的自主交互和反思,以及在排名阶段的候选物品评估,算法能够生成更符合用户偏好的推荐列表。

在这里插入图片描述

可以看下具体的技术路线,如下:

在这里插入图片描述

1、整体的推荐算法KG-enhanced Recommendation

KG-enhanced Recommendation 是一个增强型推荐算法,它利用知识图谱(Knowledge Graph,KG)来提升推荐系统的性能。这个算法的核心思想是将用户和物品在知识图谱中的路径转换为文本信息,然后融入到大模型(Large Language Model,LLM)中,以此来增强用户代理(user agent)的记忆,从而提高推荐质量。

在这里插入图片描述

2、用户-商品上下文获取

首先,从KG中提取用户和物品之间的2跳和3跳路径。这些路径提供了用户选择物品的可能原因。

然后,将提取的路径转化为自然语言文本。为了简化文本描述并使其易于LLM理解,对于2跳路径,按关系类型分组路径,并将实体合并为一个列表,强调用户和物品之间的关系,按关系类型分组路径,并将实体合并为一个列表,强调用户和物品之间的关系。例如,对于路径“User mentions features A, B, C which are described as this item”,简化为“User mentions features A, B, C which are described as this item”;

对于3跳路径,构建非信息实体集,去除正负物品中共有的实体,只保留描述性实体,例如,对于路径“User mentions features A, B, C, D, E which are described as this item and also bought by User with Item F”,简化为“User mentions features A, B, C which are described as this item”。

最后,将翻译后的文本描述整合到语言代理的模拟和排序过程中。

3、自主交互排序

在自主交互阶段,用户代理根据当前的记忆和路径文本选择物品,用户代理会考虑自己的记忆、物品的记忆以及2跳和3跳路径文本,选择一个物品进行交互。

在反思阶段,用户代理根据选择的物品和路径文本更新记忆,用户代理会接收到关于选择是否正确的反馈。然后,用户代理会根据路径文本分析选择的原因,更新自己的记忆,以更好地反映用户的偏好。

在排序阶段,用户代理根据更新后的记忆和路径文本对候选物品进行排序。

4、一些具体的收益逻辑

这个是有意义的,Figure 3 展示了一个案例研究,关于如何通过知识图谱(KG)增强的模拟来提炼用户代理(User Agents)的偏好特征。在这个案例中,用户代理通过模拟与知识图谱的交互,识别出哪些特征是用户偏好的,哪些特征是不具信息量的。

其中:

加粗特征(Bold Features) 表示这些特征被用户代理识别为用户偏好的特征。在图中,这些特征以加粗的字体显示,例如“sensual”(性感)和“sultry”(闷热的)。这些词汇代表了用户可能感兴趣的物品属性或主题,用户代理通过分析知识图谱中的路径和关系,总结出这些特征作为用户偏好的代表。

浅色特征(Light-Colored Features) 表示这些特征被用户代理识别为不具信息量的特征。在图中,这些特征以浅色字体显示,例如“pray”(祈祷)和“fallen”(堕落的)。这些词汇虽然出现在物品的描述中,但用户代理通过模拟和分析发现,这些特征并不能有效区分用户对不同物品的偏好,因此被认为是不具信息量的。

又如,Figure 4 提供了一个案例研究,展示了在知识图谱(KG)增强的排名阶段,用户代理(User Agent)如何根据与用户代理记忆共享的常见特征来对推荐候选项进行排序。这个案例通过比较两个候选项(Candidate 1 和 Candidate 2)与用户代理记忆的匹配程度,来说明用户代理如何做出推荐决策。

在这里插入图片描述

在这个案例中,候选项 1 因为与用户代理记忆有更多共同特征,所以被推荐。其中:

用户代理记忆(User Agent Memory) 包含了用户偏好的特征,这些特征是通过之前的模拟阶段和知识图谱分析得出的。这些偏好特征是用户代理用来评估和排名推荐候选项的关键信息。

候选项 1(Candidate 1) 与用户代理记忆有更多共同特征。在图中,这些共同特征可能被加粗或以某种方式突出显示,以表明它们与用户偏好的紧密关联。例如,如果用户代理记忆中包含“sensual”和“sultry”等特征,而候选项 1 也包含这些特征,那么用户代理更有可能将这个候选项排在前面。

候选项 2(Candidate 2) 与候选项 1 相比,这个候选项与用户代理记忆的共同特征较少。这意味着它与用户的偏好匹配程度较低,因此在排名中可能会被放在较后的位置。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值