在现代数字化运营中,企业需要通过高效且灵活的系统来应对日益复杂的业务需求和用户期望。事件驱动的业务规则模型通过实时响应业务事件并执行预定义规则,实现积分发放、优惠券触发、分佣处理、流程审批等任务的自动化和智能化,从而为企业提升运营效率、优化用户体验提供了强有力的支持。
什么是事件驱动的业务规则模型?
事件驱动的业务规则模型是一种以事件为中心的业务逻辑设计方法。在这种模型中,事件是业务流程中的关键触发点,如用户下单、完成任务、支付成功等;规则是针对特定事件设定的操作逻辑,如发放奖励、推送消息、触发审批等。通过工作流引擎和规则引擎的结合,系统可以自动化处理复杂的业务逻辑,并在事件发生后实时响应,执行相应的操作。
模型的核心组件
- 事件监听器
负责捕捉业务事件(如用户行为、系统状态变化等),并将其传递到规则引擎进行处理。例如:
-
用户完成订单支付事件;
-
用户注册成功事件;
-
商品库存更新事件。
- 规则引擎
基于预设规则对事件进行判断和处理。规则引擎支持灵活的配置,企业可根据需求动态调整规则。例如:
-
订单金额超过一定阈值时发放积分;
-
会员生日当天触发优惠券发放;
-
推荐人佣金计算。
- 工作流引擎
管理规则执行后触发的业务流程,确保操作按既定顺序完成。例如:
-
用户申请退款后,触发审批流程;
-
积分发放后,记录到用户账户中。
- 数据服务
提供实时、可靠的数据支持,包括用户数据、交易数据、产品数据等,是业务规则执行的基础。例如:
-
会员等级和积分余额;
-
商品库存和销量;
-
历史订单记录。
业务应用场景
1. 积分发放
事件:用户完成订单支付。
规则:根据订单金额发放对应的积分,会员等级较高的用户可获得额外积分。
流程:
-
事件监听器捕捉到支付完成事件;
-
规则引擎计算应发放的积分;
-
工作流引擎将积分添加到用户账户,并发送通知。
2. 优惠券触发
事件:用户注册成功。
规则:新用户注册后,发放一张满减优惠券,若在7天内未使用则提醒用户。
流程:
-
事件监听器监听到注册事件;
-
规则引擎触发优惠券发放;
-
工作流引擎记录发放时间,并在7天后检查优惠券状态。
3. 分佣处理
事件:被推荐用户下单成功。
规则:根据订单金额和佣金比例计算推荐人佣金,若订单超过一定金额则提高佣金比例。
流程:
-
事件监听器捕捉到下单完成事件;
-
规则引擎计算佣金并生成分佣记录;
-
工作流引擎完成分佣到账处理,并发送通知。
4. 流程审批
事件:用户申请退货。
规则:判断订单状态和商品条件,自动审批符合条件的退货请求,不符合条件的提交人工审核。
流程:
-
事件监听器监听到退货申请事件;
-
规则引擎检查订单状态和商品条件;
-
工作流引擎根据判断结果执行自动审批或提交人工审核。
模型的技术实现
-
事件捕捉与分发
使用消息队列(如RabbitMQ、Kafka)或事件总线实现高效的事件捕捉和异步分发,确保事件处理的实时性和系统的高可用性。 -
规则引擎实现
采用开源规则引擎(如Drools)或自定义规则引擎,支持规则的动态配置、热加载和版本管理,满足业务快速变化的需求。 -
工作流引擎集成
使用工作流引擎(如Camunda、Flowable)管理复杂的业务流程,确保多步骤操作的顺序性和可追溯性。 -
数据服务支持
构建实时数据访问层,通过缓存和分布式数据库提高数据查询性能。 -
可视化规则配置工具
提供可视化界面,业务人员可以直接编辑和配置规则,降低技术门槛。
模型的优势
-
实时响应
系统能够实时捕捉并响应业务事件,确保业务流程快速执行。 -
灵活配置
通过规则和流程的可视化配置,企业能够根据需求快速调整业务逻辑。 -
自动化与智能化
消除了大量人工操作,提升了业务流程的效率和准确性。 -
可扩展性
模型支持多种事件类型和复杂的规则逻辑,能够适应不同业务场景。
结语
基于事件驱动的业务规则模型将业务事件与自动化流程无缝连接,为企业实现高效运营和智能决策提供了强有力的支持。在未来,随着大数据和人工智能技术的进一步发展,这一模型将为企业创造更多的价值,成为数字化转型的关键助推器。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。