我曾多次给我的小伙伴安利Dify。它是一个高效的工作流平台,支持各种常见任务的自动化操作和协作,适合自媒体人、开发者和运营人员等。
Dify不仅支持多种模型调用,还可以通过开源的工作流来大大提高工作效率。
Dify现在的用户量其实很多,只不过它没Coze那么多创作者,所以大家都是闭门造车。
但是Dify的优势在于开源、私密,数据不用上传到平台,你在本地构建也可以。
这期很简单,给大家介绍一些开源的Dify工作流。
一些常用的工作流就省了自己去搞了。
项目地址:https://github.com/svcvit/Awesome-Dify-Workflow
工具类
工具类工作流主要是为多平台内容创作和管理提供便捷的解决方案,适合需要在多个平台上频繁发布内容的用户。例如:
-
Dify 运营一条龙.yml:这个工作流可以自动生成不同尺寸的封面和文案,适合在不同平台同步发布内容,为运营者节省了大量时间。
-
Text to Card Iteration.yml:通过图片和文案自动迭代生成卡片,适合内容反复更新的场景。
其他如 SEO Slug Generator.yml,专门为博文生成优化的 URL Slug,从而提升在搜索引擎中的表现;而 Document_chat_template.yml 是一种基于知识库的聊天模版,适合用于客服和知识问答场景。
此外,像 标题党创作.yml 和 文章仿写-单图_多图自动搭配.yml 工作流也深受自媒体创作者的欢迎。这些工具通过一键生成吸引眼球的标题和文章搭配,帮助创作者提升文章点击率。
还有自动化生成教程,这个我深得我喜欢,不过这里是个Demo。
翻译类
Dify 提供了强大的翻译工作流,通过 Prompt 和 AI 模型的结合,可以有效提高翻译的准确度。
例如:
-
宝玉的中译英.yml:采用直译、反思、意译三步策略,从而生成高质量的英文译文。该工作流适合需要严谨翻译的场景。
-
DuckDuckGo 翻译+LLM 二次翻译.yml:结合传统翻译引擎和AI模型,使得翻译更加快速且准确,适合内容量大的翻译任务。
这些翻译工作流可以灵活调整,并支持不同语言和格式。例如,translation_workflow.yml 还加入了输入语言、目标语言等参数,帮助用户获得更细致的翻译结果。
还有Dify的官方示例,切分长文本,再迭代器内翻译。
聊天机器人类
Dify 的聊天机器人工作流为用户提供了增强的智能化回复和交互体验,适合客服和用户管理。
例如:
-
根据用户的意图进行回复.yml:通过判断用户的意图,选择最佳的回复路径,确保机器人的响应符合用户需求。
-
mem0ai:提供了一个有记忆的聊天流程,可以根据上下文进行最佳回复。这些工作流不仅能提高聊天机器人的应答能力,还能让其具备更强的交互体验。
-
记忆测试:添加了短期记忆和CoT思维链,可以让聊天机器人更好地理解和响应用户的需求。
这些聊天机器人工作流还可以添加短期记忆、CoT 思维链等,使得对话更加智能和灵活,极大提升了用户体验。
代码类
对于开发者来说,Dify 还提供了一系列代码生成工作流,如:
- Python Coding Prompt.yml:通过对话方式自动生成 Python 代码,适合需要快速获得代码示例的用户。这个工作流帮助开发者在编写代码时减少重复工作,并提高代码的质量。
只需注册 Dify 账号,导入所需的工作流文件并进行简单的配置,就能通过 Dify 高效地完成代码生成工作,极大提高开发效率。
Dify使用方法
Dify 支持线上和本地部署两种方式。用户可以根据需求选择适合的方式。以下是基本步骤:
线上部署
- 打开网址 Dify 在线平台,使用 Gmail 注册账号。
- 线上可以快捷操作,免费有一定次数的GPT4o,也可以自行添加免费的API。
- 点击“导入 DSL 文件”,选择下载的工作流文件,完成后便能在工作室中运行。
本地部署
Dify 支持在本地部署,具体教程可以参考老金之前写的 Dify本地部署,本地部署的好处再次声明一下,可以使用Ollma等在本地直接跑,任何数据不需要提交,私密性非常强,老金我本人用的就是本地部署。
为了方便大家快速体验,本次使用线上部署教程,本地部署同理。
打开网址:https://cloud.dify.ai/apps
老样子Gmai来注册,然后进入官网首页。
完成后拉到最上面你就能看到已经添加好的模型了。
点击工作室,再点击导入DSL文件。
导入Github上下载的文件。
黄色叹号代表你没有这个模型,DSL文件中大部分都是deepseek模型。
官网在这:https://www.deepseek.com/
也可以像我一样切换成其他模型。
但是要注意,切换其他模型后,如果后面有代码节点,可能不兼容,需要改代码。
如果你和我一样是个代码0基础的小白,那么把报错直接扔给AI就行了。
点击运行,输入后开始运行。
运行就成功了。
发布后,你可以在你的工作室中找到它,方便再次使用。
结论
Dify 的开源工作流帮助用户在多种场景下实现了自动化操作,从内容创作到翻译和代码生成,为广大用户提供了极大的便利和提升。希望通过本文的介绍,你可以根据自身需求选择合适的工作流,快速提高工作效率。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。