【新进展】护士与人工智能协同合作:门诊接待中的创新应用

背景

随着医疗需求的日益增长,医疗系统尤其是医院门诊接待部门的压力与日俱增。接待护士在门诊中扮演着关键角色,不仅负责与患者的初步沟通,还需对患者的症状进行初步评估并进行相应的分诊。然而,面对庞大的患者数量和繁重的行政工作,护士常常感到身心俱疲,工作效率和患者满意度可能因此受到影响。当前的沟通系统主要依靠护士的人力投入,这种方式既劳动密集,又需要丰富的知识储备,难以有效应对患者数量激增带来的挑战。因此,一种可行的替代方案是利用大语言模型(Large Language Model, LLM)的能力,来辅助医疗中心的接待沟通环节。

为了应对这一挑战,本研究提出了一种创新的方法,即开发并应用一种基于情境提示工程的站点特定聊天机器人(Site-Specific Prompt Engineering Chatbot, SSPEC),用于与接待护士协同合作,以提升门诊接待流程的效率和患者体验。SSPEC是一种特定于医院接待场景的语言模型,旨在帮助护士解答患者的常见问题,减轻护士在接待过程中的压力,进而提高整体医疗服务的质量和患者的满意度。

本研究的目标包括:1)收集大规模的护士与患者间的真实对话数据,建立真实世界的对话语料库;2)开发一种能够从这些真实对话中学习并掌握场景特定知识的SSPEC系统;3)通过与护士合作的方式将SSPEC引入门诊接待流程,并通过随机对照试验(RCT)来评估其效果。

方法

本研究设计了一种基于情境提示工程的站点特定聊天机器人SSPEC,用以在医院接待场景中辅助护士进行门诊接待。研究的数据来源于两个医疗中心的10个接待点,分别位于武汉和深圳。这些接待点覆盖了医院的多个部门,包括总接待、内科、外科、儿科、妇科及急诊等。为了开发SSPEC,我们收集了35,418个真实世界的患者与接待护士之间的对话,累积了38,737分钟的音频数据,最终转换为2,383,920个字的文本语料库。

图:技术路线:(A) 从两个医疗中心的10个接待点收集了对话音频。(B) 音频数据被转换为文本格式,并经过了细致的人工编辑,涵盖了患者的各种问题,包括行政、分诊和初级护理等方面。这些案例被用作每个接待点知识提取的训练集。针对站点特定的提示工程,应用了微调和提示策略,开发了SSPEC系统。© 与训练集独立的案例被保留为验证集,用于在事实准确性、完整性、安全性、共情性、可读性和满意度等方面进行比较测试。(D) 实施了一个警报系统来标记SSPEC回答中的不确定性。随后,建立了接待护士与SSPEC之间的协作模型,并在随机对照试验中测试了其在门诊接待环境中的实用性。
数据收集与处理

对话数据的收集涉及两家医院的10个接待点,每个点的对话数据量至少为3000分钟。这些对话数据通过语音录音设备采集,随后被自动转换为文本并进行去标识化处理,以去除可能涉及患者隐私的内容。最终,所有数据经过人工校对,确保数据的准确性。

为了保证SSPEC在真实世界应用中的表现,我们在数据处理中注重对重复问答(Repeated Questions and Responses, Q&Rs)和负面情绪的识别与标注。重复问答通常意味着沟通过程中的低效或信息传递的中断,而负面情绪则暗示在沟通过程中存在缺乏共情的问题。通过对这些对话特征的标记和分析,我们希望能够进一步优化SSPEC的设计,使其在真实世界的场景中能够更好地辅助护士工作。

护士和SSPEC这种合作模式的设计包括以下几个细节:

  1. 患者初步问答由SSPEC处理:对于涉及常见行政问题、分诊和基础护理咨询的患者问题,SSPEC能够自动生成标准化的回答,从而减少护士在这些事务上的投入。

  2. 不确定性管理:SSPEC具备自动标记不确定回答的功能,当其对某个问题的回答存在不确定性或被系统认为有潜在风险时,会触发警报,通知护士介入。这样可以确保所有患者获得的答案都是安全且可靠的。

  3. 护士的监督与干预:护士在SSPEC标记出不确定回答时进行人工审查和修改。这种监督机制确保了在任何可能存在安全隐患的情况下,护士能够及时介入,保障患者的安全和回答的准确性。

  4. 系统反馈与持续优化:SSPEC在生成回答后,会将患者的反馈纳入系统,通过不断的反馈与调整,优化其在类似情境下的回答能力。

图:涉及警报系统的护士-SSPEC 协作模型以缓解不确定性。患者到达接待处后,他们的问题会被录音,并自动转换为文本。为了应对 SSPEC 生成的不确定或潜在有害的回复,实施了一个警报系统。当检测到任何“不确定信号”时,无论是通过关键短语匹配、独立的大型语言模型评估,还是自动评估,该系统都会向护士发出警报。此警报会提示护士立即审查或修改回复。此外,专门团队还会审查所有患者与 SSPEC 的对话,以持续优化提示。
SSPEC开发与内部验证

SSPEC的开发基于GPT-3.5模型,并结合了站点特定的知识库,以确保其回答的准确性和情境适应性。在开发过程中,我们首先对GPT-3.5模型进行了自动化的微调,使其能够理解和应对护士与患者之间的对话需求。同时,我们还为SSPEC设计了特定的提示模板,包括护士的角色说明、患者的具体问题描述以及站点特定的知识内容。通过这种方式,SSPEC能够根据不同接待点的实际情况生成合适的应答。

提示模板的设计是SSPEC开发中的重要环节,每个模板包含以下几个部分:

  1. 角色说明:明确SSPEC作为护士助手的角色,强调其在接待流程中的作用,包括患者沟通支持、解答基础护理问题、分诊、行政事务处理以及紧急情况响应等。

  2. 患者问题:针对患者的具体提问进行准确理解和提取,以便SSPEC能够提供有针对性的回答。

  3. 站点特定知识:根据接待点的环境和需求,融入特定的知识内容,确保回答符合实际情境。

开发过程中,我们使用了80%的数据集进行模型训练,并保留20%用于验证。通过引入六个评估维度(事实准确性、完整性、安全性、共情性、可读性和患者满意度),我们对SSPEC的性能进行了全面评估。这些评估由独立的专家和普通评审小组进行,以确保结果的客观性。

随机对照试验设计

图:随机对照试验中的工作流程。患者参与者被随机分配到护士-SSPEC 组或护士组。护士-SSPEC 组的患者主要通过音频与 SSPEC 进行互动,如果检测到不确定的回复,护士会收到警报进行审查。对于护士组的患者,他们被直接引导到护士处并进行面对面的交流。在会面结束后立即测量患者的满意度。

在SSPEC开发完成后,我们设计了一项单中心随机对照试验,旨在评估护士与SSPEC合作模式在实际应用中的效果。研究共纳入2,164名患者,随机分配至护士组和护士-SSPEC合作组。在护士-SSPEC合作组中,患者的问题首先由SSPEC进行回答,只有在SSPEC不确定或被标记为可能存在安全风险的情况下,护士才介入审查和修改回答。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值