搭建图文并茂的技术文档问答知识库

安装启动管理界面

安装依赖:

Bash                  
pip install -U williamtoolbox

创建一个工作目录,并进入该目录:

Bash                  
mkdir william-toolbox && cd william-toolbox

启动后端:

Bash                  
william.toolbox.backend

启动前端:

Bash                  
william.toolbox.frontend

现在可以打开浏览器:http://127.0.0.1:8006

在这里插入图片描述
默认账号密码为: admin/admin 第一次登录后,会要求你更改密码。

管理员登录后可以新增用户以及授权用户可以看到的界面选项:

在这里插入图片描述

创建知识库的基础模型:deepseek_chat

在 “模型”列表也,系统默认创建了一个 deepseek_chat 模型,先去 https://platform.deepseek.com/ 获取一个 API Key。然后点击编辑按钮,此时会弹出一个编辑框:

将你的 API Key 贴到绿色框中。此时点击侧边 “启动” 按钮,等待模型启动。

启动完成后,进入 OpenAI 兼容服务 页面,也是点击启动:

等待日志输出。如果看到日志了,日志也没啥异常,这个时候就可以进入聊天界面。

和新创建的模型聊天

点击新建聊天:

然后在右侧输入你的问题:

点击发送即可:

如果无法获得结果,那么可能原因有两个:

1OpenAI 兼容服务没有启动

1Deepseek Chat 模型 API Key 填写有问题或者没有充值。

第二个问题可以查看这里:004-部署好的模型如何测试

创建 RAG 服务

下载下面的 tokenizer.json 文件,下载: https://cdn.deepseek.com/api-docs/deepseek_v2_tokenizer.zip

然后从飞书随便导出了一个 PDF (目前图文版,我们支持 pdf/word 两种格式,其他格式展示无法解析里面的图片),然后放到一个目录里。

示例文档可以问候的查看原文链接

现在进入 RAG 管理,点击 添加RAG 按钮:

此时弹出创建框:

根据图片填写对应的值,这里有三个值需要关注:

1Tokenizer 路径,需要填写前面你下载的文件 tokenizer.json,需要是这个文件的完整路径。

1文档路径,也就是放上面 PDF 的路径

1填写后缀名,多个按逗号分割,这里可以填: .pdf

点击确认,然后再点击启动,大概1分钟内。可以点击右侧 “标准错误日志” 查看启动情况。

和我们新建的技术文档知识库聊天

进入聊天界面,新建一个聊天,然后左侧下方选择你新建的的 RAG 服务名称(我这里是 mcp-docs),然后输入你的问题即可:

可以看到,RAG 回复你的时候,会把图片也做输出。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 知识库构建与应用 知识库的构建是一个复杂的过程,其核心技术围绕着检索增强生成 (RAG) 框架展开。这一框架涵盖了多个关键技术模块,包括前端交互、向量存储、嵌入模型以及推理大模型等核心部分[^1]。通过这些技术组件的有效组合,可以实现高效的知识管理和查询功能。 #### 前端交互设计 在知识库系统的开发过程中,前端交互的设计至关重要。良好的用户体验不仅提升了用户的满意度,还提高了系统使用的效率。前端界面应支持多种输入方式,如文本、语音甚至图像,并提供直观的结果展示和反馈机制。 #### 向量存储优化 为了提升检索速度和准确性,现代知识库广泛采用了向量数据库来存储文档表示。这种做法利用了先进的嵌入模型将非结构化数据转化为高维空间中的稠密向量[^3]。随后,在这个基础上执行相似度计算以找到最接近目标的信息片段。 ### 记忆机制探讨 记忆机制对于任何智能体而言都是不可或缺的一部分,尤其是在涉及长时间序列或多回合交流场景下更是如此。传统方法往往依赖于固定长度的历史记录或者特定模式匹配来进行响应生成;然而这种方法存在明显局限性——无法充分捕捉深层次语义关联及其动态变化特性。 相比之下,基于Transformer架构的大规模预训练语言模型则展现出了卓越的记忆保持能力和泛化性能。这类模型能够在不增加额外参数的情况下记住大量先前见过的内容,并据此做出合理预测或回应新请求[^4]。 ### 图文理解技术分析 随着多媒体内容日益丰富多样,单纯依靠文字描述已不足以满足实际需求。因此,发展具备跨模态感知能力的新一代AI成为必然趋势之一。“多模态大模型”正是为此目的而生:它们不仅可以单独处理来自不同感官渠道的数据流(比如视觉特征提取),还能联合解析两者间潜在联系从而获得更全面的认识视角。 具体到应用场景上来看,则表现为以下几个方面优势: - **更强表达力**:相比单一维度表征体系,“融合型”解决方案能够更好地刻画事物本质属性; - **更高鲁棒性**:当某一类信号源受到干扰时,其他类型仍可作为补充依据维持整体判断稳定性; - **更多可能性**:借助图片说明解释抽象概念变得可行,反之亦然。 ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') def embed_text(texts): embeddings = model.encode(texts) return embeddings ``` 上述代码展示了如何使用 `sentence-transformers` 库加载一个预先训练好的小型 BERT 变种模型并将给定字符串列表转换为其对应的数值向量形式以便后续进一步加工处理。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值