多模态大模型内嵌语言模型总是出现灾难性遗忘怎么办?
像文生图那样有ControlNet即可解决。
这就是由360人工智能研究院提出的IAA的核心思路。该研究成果已被AAAI接收,并且开源。
IAA工作的思路,就是希望能把多模态理解能力像文生图领域中的ControlNet一样,作为插件添加到基座的语言模型之上,从而实现在完全不影响语言模型原有能力的前提下,实现多模态能力的插件化,并进一步形成一种全新的语言模型生态体系。
针对语言模型研究全新插件控制机制
当前的多模态大模型(LMM:Large Multimodal Model)主流采取的是以LLaVA系列为代表的桥接式结构:视觉编码器与LLM之间通过模态桥接器projector进行连接实现多模态理解能力。
桥接式结构的优点是结构简单,训练成本低(几十万微调数据即可实现基本的图像理解能力),目前主流的LMM模型包括QwenVL、DeepSeekVL、internVL以及研究院自研的360VL(https://github.com/360CVGroup/360VL)等都是采用这种结构。
但桥接式结构一直存在一个难以克服的缺点:模型多模态能力的提升不可避免地带来原有文本能力的下降。
这背后的深层原因是,为了尽可能提升LMM在多模态理解任务上的性能表现,主流模型中内嵌的LLM语言模型参数都要在多模态训练中打开参与学习,这样虽然可以比较容易刷高多模态任务上的指标,但语言模型原有的文本理解能力会因为参与多模态训练而发生灾难性遗忘的问题。
这也是为什么当前主流的多模态模型都独立于语言模型之外存在,并冠以-VL进行区分的原因。
上图清晰地比较了多模态训练前后,内嵌语言模型在文本任务(MMLU和C-eval)上因为灾难性遗忘的发生而出现的能力下滑情况。
另外从实用的角度来说,当前的多模态模型需要独立于语言模型之外单独部署,意味着应用时需要翻倍的部署成本,从经济的角度来说也亟待新技术的突破。
“IAA工作的灵感来自于我们同时负责的多模态生成方向的研究。”冷大炜博士表示。
“文生图领域有着与语言模型领域完全不同的繁荣生态。在文生图领域中,大家是围绕着一个基座模型,通过接入不同的插件来完成不同的任务,而不是像语言模型领域这样要求一个模型完成所有任务。IAA工作借用了这一思路。”
在IAA的研究中作者发现,简单地将文生图领域的ControlNet结构复制到语言模型上的表现并不好,背后的原因是当前语言模型主流是Transformer堆叠的结构,这与文生图模型中的UNet结构有着很大的差异,为此针对语言模型需要研究全新的插件控制机制。
在实验比较了一系列不同的结构后,最终形成了v1版的IAA插件网络结构如下:
与主流的LLaVA结构相比,IAA在网络设计上保持基座语言模型参数不变,从而避免了灾难性遗忘问题的发生;对于多模态知识的学习,则是通过多个新增的插入层进行专门处理。
推理时,IAA网络只需要部署一套模型权重,text-only任务走text-only workflow,而多模态任务则走multimodal workflow,从而避免了既要部署一套语言模型还要另外部署一套多模态模型的成本难题。
此外,IAA插件结构不仅适用于多模态任务,对于需要在基座模型能力上特别加强的任务,如code、math等任务,一样可以通过插件的方式进行专门增强,实现“基座模型+专业插件”处理专业任务的全新用法和生态。
在通用多模态benchmark上比较了IAA与其它相关工作的表现,验证了IAA在保持模型原有能力的同时,能有效提升其在多模态任务上的表现。
关于360人工智能研究院
在360集团All in AI的大背景下,360人工智能研究院发挥自身的智力优势,承担多模态理解和多模态生成大模型(俗称图生文和文生图)的战略研发任务,并在两个方向上持续发力,陆续研发了360VL多模态大模型,BDM文生图模型,可控布局HiCo模型,以及新一代DiT架构Qihoo-T2X等一系列工作。
近日,研究院在多模态理解方向的工作IAA和在多模态生成方向的工作BDM分别被AI领域的top会议AAAI接收,这两项工作的研发负责人为冷大炜博士。
据悉本届AAAI 2025会议收到近1.3万份投稿,接收3032份工作,接收率仅为23.4%。
Arxiv: https://www.arxiv.org/abs/2408.12902
Github: https://github.com/360CVGroup/Inner-Adaptor-Architecture
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。