DeepSeek,作为新兴的AI模型开发者,国人的骄傲。近期遭遇了来自OpenAI(GPT的母公司)和Anthropic(Claude的母公司)的质疑和围剿。
据《金融时报》报道,OpenAI声称发现了DeepSeek利用他们的模型进行训练的迹象,这涉嫌侵犯知识产权。从技术角度来解释,OpenAI指控DeepSeek进行了模型蒸馏,即使用大型模型的输出来提高小型模型的性能,从而以较低的成本在特定任务上取得类似的结果。
在硅谷,这一事件引发了广泛的关注和讨论,许多网友对OpenAI和Anthropic的联手围剿表示不满,并讽刺OpenAI在数据使用和知识产权方面的双重标准。
一、知识蒸馏
知识蒸馏(Knowledge Distillation)是什么?知识蒸馏是一种模型压缩和知识迁移的方法,旨在将大型教师模型中的知识转移到小型学生模型中。
-
教师模型(已训练):一个高精度、但可能较为复杂的大型模型。
-
提取知识:从教师模型的输出(如概率分布、中间特征等)中提取出有用的知识。
-
学生模型(待训练):一个轻量化、但性能可能较低的小型模型。
-
蒸馏训练:利用教师模型提取出的知识,作为学生模型的训练目标进行训练。
-
精炼学生模型:经过蒸馏训练后的学生模型,能够学习到教师模型的泛化能力,从而达到或接近教师模型的性能。
模型蒸馏是一种在AI领域常见的模型压缩技术,通过将大型模型的知识“蒸馏”到小型模型中,以降低成本并提高性能。通过这一过程,学生模型能在保持低计算成本的同时,学习到教师模型的泛化能力,实现性能的大幅提升,接近教师模型的性能水平。
DeepSeek是否使用OpenAI进行了模型蒸馏?OpenAI指控DeepSeek违反服务条款使用其模型进行违规蒸馏,并停用了DeepSeek的API账号,而DeepSeek尚未正式回应此指控,其一直专注于技术创新以降低模型成本。
OpenAI宣称发现了证据表明DeepSeek使用其专有模型来训练自己的模型**,违反了服务条款中的“蒸馏”禁令。**所谓“蒸馏”,就是上面提到的知识蒸馏,即将较大、功能较强的模型的知识提炼到较小的模型中,以降低成本。
DeepSeek推出的新模型DeepSeek-R1在数学、编程和推理等关键领域的表现能与OpenAI的最强推理模型相媲美,且训练费用仅为OpenAI最新大模型的二十分之一。
木秀于林,风必摧之。DeepSeek确实牛逼,同时也遭到了硅谷的围攻。
二、DeepSeek的技术创新
DeepSeek的技术创新有哪些?DeepSeek通过创新的混合专家架构**(MoE)和多头潜在注意力机制(MLA)****优化模型架构与算法,提高了计算效率,**降低了模型训练和运行的成本。
一、混合专家架构(MoE)
混合专家架构(MoE)是一种允许模型根据输入动态选择合适的专家模块进行处理的架构。在DeepSeek中,MoE架构的应用带来了显著的计算成本降低和性能提升。
-
动态专家选择:MoE架构的核心在于其动态性。对于每个输入,模型会根据其特性选择最合适的专家模块进行处理。
-
细粒度专家分割:DeepSeek采用了细粒度的专家分割策略,将专家进一步细分为更小的单元,能够更灵活地组合和激活专家。
-
共享专家隔离:在DeepSeek的MoE架构中,还引入了共享专家隔离策略。一些专家被标记为共享专家,用于捕捉共同知识并减轻激活专家之间的冗余。
二、多头潜在注意力机制(MLA)
多头潜在注意力机制(MLA)是DeepSeek提出的一种创新的注意力架构,旨在降低推理显存需求并提高计算效率。
-
低秩联合压缩:MLA通过对注意力键和值进行低秩联合压缩,显著减少了推理时的KV缓存。
-
门控机制:在MLA中,每个输入token都会通过门控机制选择一部分路由专家参与计算,能够根据输入的特性动态调整计算路径。
-
位置信息解耦:MLA通过特殊的位置信息解耦策略,解决了压缩后的低秩key-value信息无法直接融入相对位置信息的问题。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。