MCP 是 Anthropic 公司提出的开源协议,旨在通过标准化交互方式解决AI大模型与外部数据源、工具的集成难题,阿里云百炼上线了业界首个的全生命周期 MCP 服务,大幅降低了 Agent 的开发门槛。本文介绍基于百炼平台"模型即选即用 + MCP 服务"模式,5 分钟即可完成搭建。
MCP 让 AI 应用开发产生“革命性突破”
传统 AI 应用的“孤立困境”
当 AI 应用仅依赖大模型自身能力,无法调用工具时,如同“断臂的工人”,其局限性将直接制约商业价值,比如:无法获取天气、新闻等实时动态数据。
Function Call 的成本与效率无法平衡
行业曾普遍采用 Function Call 技术,来实现 AI 应用的工具调用问题,但其开发模式存在显著瓶颈,每个 API 都需要硬编码,为不同平台反复适配,开发和维护成本极高。
MCP 让工具调用像“插拔U盘”一样高效
MCP 将 AI 模型与数据/工具服务的关系从“硬编码依赖”转变为“协议驱动”、降低 AI 应用开发中的技术门槛,可跨平台操作,将工具对接耗时缩短至 5-10 分钟。
实践教程
通过阿里云百炼,以零代码方式快速构建基于大模型的智能体应用。进一步可以自主选择大模型来完成任务规划、工具选择与调用,并为智能体灵活添加各类技能。接下来将详细展示如何通过集成官方的高德地图 MCP Server,为智能体添加详尽的地图信息与天气查询能力,从而构建一个功能全面的旅行规划智能助手。
方案架构
配置完成后,会在本地搭建一个如下图所示的运行环境。
创建智能体
- 访问百炼应用管理[1],按照下图所示单击新增应用。
- 在弹框中,按照下图所示,选择智能体应用,然后单击立即创建。
- 应用创建成功后如下图所示。
配置智能体
模型配置
说明:配置基础模型,实现任务规划与工具的选择及调用,本方案以通义千问-Max
为例。
- 如下图所示,选择模型。
- 在弹出的看板中按照下图所示,选择模型,然后单击确认。
- 如下图所示,模型配置为
通义千问-Max
。
指令配置
说明:系统提示词,包括角色设定、任务目标、具备的能力及回复的要求与限制等,好的提示词会直接影响智能体效果。
- 复制以下提示词。
# 角色你是一位经验丰富的旅游规划专家,擅长使用MCP工具为用户提供全面的旅行规划服务。你对全球各地的旅游景点、文化习俗和交通住宿信息了如指掌,能够根据用户的需求提供个性化的旅行建议。
## 技能### 技能 1:理解客户需求- 详细了解用户的旅行偏好,包括目的地、预算、出行日期、活动偏好等信息。- 使用MCP工具收集并分析相关信息,确保准确把握用户需求。
### 技能 2:制定旅行计划- 根据用户的需求,使用MCP工具生成详细的旅行计划,包括但不限于: - 行程安排:推荐的游览路线、活动安排、时间分配等。 - 住宿建议:根据预算和偏好推荐合适的酒店或民宿。 - 交通指南:提供从出发地到目的地及各个景点之间的交通方式和路线建议。 - 餐饮推荐:介绍当地的特色美食和餐厅。 - 注意事项:提醒用户需要注意的文化差异、安全提示等。
### 技能 3:优化旅行计划- 根据用户的反馈调整旅行计划,确保最终方案满足用户的所有需求。- 提供备用方案以应对可能的变化,如天气变化、交通延误等。
### 技能 4:解答旅行相关问题- 回答用户关于旅行的各种问题,例如签证、保险、货币兑换等。- 如果遇到不确定的问题,可以使用MCP工具或其他搜索工具查找相关信息。
## 限制- 只提供旅行相关的建议和信息,不提供预订服务。- 所有价格均为预估,可能会受到季节等因素的影响。- 使用MCP工具时,必须遵循其使用规范,确保数据的安全性和准确性。- 所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。
- 按照下图所示,填写提示词。
知识配置
说明:开启联网搜索,可以实时获取互联网上最新的数据信息。
按照下图所示,开启联网搜索。
技能配置
说明:配置技能,使智能体能够支持 MCP 服务调用,并可根据需求自行选择相应功能。
使用官方 MCP Server。
(1)按照下图所示,添加 MCP 服务(本方案以 Amap Maps 为例)。
(2)在弹出的看板中按照下图所示,选择Amap Maps,单击立即开通,请根据提示完成服务开通。
(3)Amap Maps 服务开通后,选中Amap Maps,然后单击确认。
体验智能体
- 在对话框输入以下提示词,然后单击发送按钮。
帮我制定未来几天,杭州5日游计划,请包含吃住行,天气,酒店(凤起路附近),餐饮美食。
- 输出示例如下图所示。
清理资源
测试完方案后,记得删除智能体应用,避免继续产生费用,访问 应用管理[1]页面,找到目标应用单击更多,然后再单击删除应用,最后按照提示完成删除。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。