随着加密货币市场的快速发展,自动化交易工具成为投资者优化收益的重要手段。Freqtrade 是一款功能强大的开源量化交易机器人,专为加密货币市场设计,提供从策略开发、回测、优化到实时交易的全流程支持。本文将详细介绍 Freqtrade 的核心功能、使用方法以及它如何帮助用户在加密货币市场中实现智能交易。
项目背景
Freqtrade 是一个完全开源的量化交易框架,旨在帮助用户开发、测试和运行加密货币交易策略。无论是初学者还是经验丰富的交易者,Freqtrade 都能为其提供灵活的工具和框架,助力自动化交易的实现。
Freqtrade 的设计目标包括:
-
提供强大的策略开发和回测功能;
-
支持实时交易,并提供严格的风险控制;
-
灵活的扩展性,适配不同的交易所和策略需求。
以下为 Freqtrade 的架构示意图:
核心功能
1. 多交易所支持
Freqtrade 支持 Binance、Coinbase Pro 等主流加密货币交易所,并通过统一的接口与不同交易所无缝集成。
2. 策略开发与回测
Freqtrade 提供了强大的策略开发工具,用户可以通过 Python 自定义交易策略,并利用框架内置的回测引擎对策略进行验证和优化。
3. 风险管理
内置丰富的风险管理机制,包括止损、止盈、最大仓位限制等,帮助用户控制交易风险。
4. 数据导入与管理
Freqtrade 支持从交易所导入历史数据,并可进行数据清洗和格式化,方便策略的开发和回测。
5. 交互式 Web 界面
提供直观的 Web 界面,实时监控交易状态、策略表现和账户资产变化。
快速入门
1. 安装 Freqtrade
使用 Docker 安装
Freqtrade 推荐使用 Docker 部署,以下为安装命令:
docker pull freqtradeorg/freqtrade:stable
启动容器:
docker run -it --rm freqtradeorg/freqtrade:stable
源码安装
如果不使用 Docker,也可以通过源码安装:
git clone https://github.com/freqtrade/freqtrade.git``cd freqtrade``pip install -r requirements.txt
2. 初始化项目
初始化 Freqtrade 项目并生成配置文件:
freqtrade create-userdir --userdir user_data``freqtrade new-config --config user_data/config.json
编辑 config.json
文件,填写交易所 API 密钥和相关配置。
3. 获取市场数据
使用以下命令导入历史数据:
freqtrade download-data --exchange binance --quote USDT --pairs BTC/USDT
4. 策略开发与回测
示例策略开发
Freqtrade 提供了简单易用的策略模板,以下为一个 RSI 策略示例:
from freqtrade.strategy.interface import IStrategy``from pandas import DataFrame`` ``class SimpleRSIStrategy(IStrategy):` `timeframe = '5m'`` ` `def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:` `dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)` `return dataframe`` ` `def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:` `dataframe.loc[` `(dataframe['rsi'] < 30),` `'buy'] = 1` `return dataframe`` ` `def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:` `dataframe.loc[` `(dataframe['rsi'] > 70),` `'sell'] = 1` `return dataframe``
回测策略
通过以下命令运行回测:
freqtrade backtest --strategy SimpleRSIStrategy --timerange 20230101-20231231
运行后会生成策略表现的详细报告,包括收益率、风险指标和交易次数等。
5. 启动实时交易
使用以下命令启动实时交易:
freqtrade trade --strategy SimpleRSIStrategy
实时交易模式下,Freqtrade 将根据策略信号自动下单和管理仓位。
示例可视化
以下是 Freqtrade 提供的部分可视化示例:
-
策略表现曲线
-
账户资产变化
======================== DAY BREAKDOWN =========================``| Day | Tot Profit USDT | Wins | Draws | Losses |``|------------+-------------------+--------+---------+----------|``| 03/07/2021 | 200.0 | 2 | 0 | 0 |``| 04/07/2021 | -50.31 | 0 | 0 | 2 |``| 05/07/2021 | 220.611 | 3 | 2 | 0 |``| 06/07/2021 | 150.974 | 3 | 0 | 2 |``| 07/07/2021 | -70.193 | 1 | 0 | 2 |``| 08/07/2021 | 212.413 | 2 | 0 | 3 |
应用场景
- 自动化交易
- 利用 Freqtrade 实现加密货币市场中的自动化交易策略,减少人为干预。
- 量化策略研究
- 快速验证不同的交易策略,并通过回测优化参数。
- 风险控制与监控
- 提供丰富的风险管理工具,帮助用户降低投资风险。
- 教育与学习
- 适合作为量化交易和加密货币市场的学习工具,帮助用户掌握从数据处理到策略开发的全流程。
总结
Freqtrade 是一个功能强大且灵活的量化交易框架,专为加密货币市场设计。它不仅支持策略开发、回测与优化,还提供了完善的实时交易和风险管理功能。无论您是交易员、研究员还是量化交易爱好者,Freqtrade 都是一个值得深入学习和使用的工具。
项目链接:https://github.com/freqtrade/freqtrade
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。