FinMem 是一个基于大语言模型(LLM)的开源量化交易框架,设计用于复杂金融环境中的自动化交易和投资决策。它采用分层记忆与特征设计的理念,旨在模拟人类交易员的认知结构,赋予机器人动态适应市场变化的能力,从而提升量化交易的效率和收益。
项目背景
近年来,大语言模型在多个领域的问答、推理等任务中表现出卓越的能力。然而,将 LLM 应用于金融领域面临诸多挑战,包括多源信息整合、决策链的建立,以及实时响应的复杂性。为此,FinMem 提出了分层记忆(Layered Memory)与角色设计(Character Design)相结合的架构,通过模拟人类交易员的认知和反应模式,实现对金融数据的高效解读和灵活决策。
核心特点
-
分层记忆模块
模拟人类交易员的记忆结构,将关键信息存储在分层记忆中,用于快速访问与长期优化。 -
角色设计与动态适应
支持自定义交易角色,为机器人注入特定的交易风格,动态适应金融市场波动。 -
高效多源信息处理
集成多种金融数据源,结合历史信息与实时数据,快速形成投资决策。 -
灵活的训练与测试模式
提供训练模式(train)和测试模式(test),支持从零开始训练模型或基于已有模型优化决策。
项目架构
以下是 FinMem 的系统架构和核心模块的工作流图:
分层记忆模块,支持实时更新与多层存储。
交易机器人的工作流,包括数据处理、记忆更新和决策输出。
角色设计支持用户根据需求定制交易策略风格。
快速入门
1. 安装依赖
确保 Python 环境版本为 3.10 或以上,安装依赖库:
pip install -r requirements.txt
若使用 OpenAI 模型或 HuggingFace 模型,请在
.env
文件中配置相应的 API 密钥:
`OPENAI_API_KEY = "<Your OpenAI Key>"` `HF_TOKEN = "<Your HuggingFace Token>"`
2. Docker 部署
FinMem 支持通过 Docker 快速部署:
`docker build -t finmem .devcontainer/.` `docker run -it --rm -v $(pwd):/finmem finmem bash`
3. 运行示例
示例:训练模式
以下代码展示了如何加载 TSLA 的历史数据,并对模型进行训练:
`python run.py sim \` `--run-model test \` `--trained-agent-path data/05_train_model_output \` `--market-data-path data/06_input/subset_symbols.pkl \` `--start-time 2023-01-01 \` `--end-time 2023-03-01 \` `--result-path data/11_test_result`
示例:测试模式
在已有训练模型的基础上运行测试:
`python run.py sim \` `--run-model test \` `--trained-agent-path data/05_train_model_output \` `--market-data-path data/06_input/subset_symbols.pkl \` `--start-time 2023-01-01 \` `--end-time 2023-03-01 \` `--result-path data/11_test_result`
4. 恢复任务
当运行中断时,可通过检查点恢复任务:
python run.py sim-checkpoint \` `--checkpoint-path data/06_train_checkpoint \` `--result-path data/05_train_model_output \` `--run-model train` `
项目结构
FinMem 的代码组织清晰,以下为主要目录结构:
`finmem` `├── config # 配置文件目录` `├── data # 数据存储目录` `├── puppy # 核心代码模块` `├── run.py # 主程序入口` `├── run_examples.sh # 示例脚本`
应用场景
-
单支股票交易
FinMem 特别适用于单支股票的量化交易,可针对个股历史数据进行策略优化与收益提升。 -
多资产组合优化
借助分层记忆功能,机器人可处理多种资产类别数据,实现高效的资产配置与组合优化。 -
个性化策略设计
用户可根据需求通过角色设计模块定制交易风格,如风险偏好、投资周期等。
总结
FinMem 是一个创新性的大语言模型量化交易框架,通过分层记忆与角色设计,为用户提供强大的自动化交易能力。其灵活的配置与强大的可扩展性,使其适用于多种金融场景,无论是学术研究还是实际应用,都能发挥巨大的价值。
项目链接:https://github.com/pipiku915/FinMem-LLM-StockTrading
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。