平安集团首席科学家肖京:大模型在金融行业的应用场景与前景

4月10日,国民财富发展研究合作平台(“国研平台”)2025春季峰会在京举办。平安集团首席科学家肖京出席峰会并发表主题演讲。

肖京表示,人工智能对人类社会产生的影响可以总结为效率和智慧。DeepSeek的出现标志着全球人工智能进入能力升维,进入能学习强思考、触类旁通的第三个发展阶段;其两大显著特点是开源性与垂域增强能力,以及强化学习尺度法则,使金融行业迎来客户需求、工作模式和商业生态三大变化。平安集团在营销、服务、运营、风控上面都有具体场景,在风险治理上形成完整的风险治理体系,以期能够有效地支持在应用场景中呈现具体应用价值。

img

人工智能正在深刻改变人类社会,掀起了一场“效率+智慧”双重提升的变革浪潮。在金融行业,人工智能的应用不仅提升了效率,还推动了业务模式的创新和生态的重构。以下从人工智能的发展阶段、金融行业的变化、前沿模型的应用,以及中国平安的具体实践四个方面展开探讨。

一、人工智能发展:从“人工+智能”到“强思考模型”

人工智能的发展可以分为三个阶段:

(一)人工+智能

这一阶段的特点是高度依赖人工标注数据。尽管基于大数据,但模型的能力受限于标注数据的覆盖范围,只能完成“见过”的任务。虽然结果准确且专业,但工作方式较为机械、生硬,难以应对复杂场景。

(二)博闻强记但不会思考

以OpenAI的ChatGPT为代表的生成式大模型开启了这一阶段。模型通过预训练记住了大量数据中的知识,能够应用于多种场景,大幅减少了人工标注的需求。然而,这一阶段的模型存在局限性:它缺乏自我思考能力,无法解释答案的来源,导致不可控性较高,且容易出现幻觉(错误率高达40%-50%),限制了其在严肃场景中的应用。

(三)强思考模型

随着DeepSeek-R1、OpenAI的o1/o3等强推理模型的出现,人工智能进入了第三阶段。这一阶段的模型不仅具备强大的记忆能力,还能够自我思考、举一反三,提供清晰的推理路径。这种透明性使得模型的错误来源可被追踪和修正,从而显著提升了其可控性和应用前景。

二、金融行业面临的三大变化

中国平安引入DeepSeek-R1模型后,发现金融行业正在经历客户、工作模式和商业生态的深刻变化:

一是客户需求的变化。

客户对金融服务的个性化、智能化需求日益增长,传统的服务模式已难以满足。

二是工作模式的变化。

人工智能正在重塑金融行业的运营方式,从依赖人工到逐步实现智能化。

三是商业生态的变化。

行业竞争加剧,技术差和信息差正在被抹平,金融机构需要通过技术创新保持竞争力。

三、DeepSeek模型的特点与应用

DeepSeek模型具有以下两个显著特点:

(一)开源性与垂域增强能力

DeepSeek是开源模型,通过监督微调和强化学习方法实现了更优的性能。然而,其开源部分仅包括模型的头和尾,中间部分的数据和代码未开源。这意味着要更好地改造DeepSeek,需要具备构建中间模块的能力,以实现垂域增强,减少在金融、医疗等专业领域的幻觉现象。

img

(二)强化学习尺度法则

模型的推理能力与强化学习的迭代次数呈正相关。通过持续增加专业知识和数据,并进行强化学习迭代,模型的能力可以不断提升。这种持续学习能力为垂直领域的应用提供了巨大机遇。

img

在未来的发展中,DeepSeek有望在包括金融行业在内的众多行业实现广泛应用。这标志着人工智能时代的全面到来。这一时代将带来诸多变革,抹平很多技术差和信息差,会重构很多行业的业务模式。在不久的将来,人们的工作模式很可能演变为由专业人员带领机器人或者智能体团队为客户提供服务。同时,大模型可能也会迅速在各个垂直领域逐步成熟,成为广泛应有的工具。如在就诊场景中,未来部分患者在就医前会先通过DeepSeek进行初步诊断,并与医生的诊断结果进行比对。

尽管大模型如DeepSeek能力强大,但其幻觉率仍超过10%,在严肃场景中难以直接使用。因此,仅依靠大模型是不够的,仍需要科技团队的支持来弥补不足。

四、大模型可持续发展路径

对于大模型,后续要继续保持可持续发展。可持续发展包含三个核心步骤。

(一)在垂直领域开展预训练,并进行指令增强与指令微调,随后实施强化学习,确保持续学习的推进。通过这一过程,实现快速思考与慢速思考相结合的大小模型协同体系,并构建智能体平台,以实现对众多场景的快速规模化覆盖;

(二)在业务场景应用方面,广泛拓展应用场景。自年初以来,已采用三种模式进行推广:一是对既有场景进行升级,即在原有已广泛应用人工智能的场景中引入DeepSeek等模型,实现“老树开新花”;二是在以往模型难以应用的场景中,利用DeepSeek推理型大模型填补空白,实现“新枝发新芽”;三是开发原生的端到端人工智能应用,即“沃土生奇苗”;

(三)需高度重视人工智能的安全治理。人工智能的应用以及大模型的应用存在诸多风险问题,必须深化风险治理工作。

*五、“平安脑”智能引擎深度赋能“综合金融+医疗养老”实践*

基于上述工作,我们对以往的人工智能底层引擎进行了升级,构建“平安脑”智能引擎体系。

(一)底层算力平台和数据平台。数据平台的主要功能是支持分析、洞察和策略制定等工作。在此基础上,我们进一步增加了数据飞轮效应,即通过持续学习不断提升模型能力。因此,我们需要不断拓展新的专业数据以助力模型的优化。数据平台与算法模型平台相辅相成:数据用于训练以增强模型,而模型则帮助提升数据质量,进而支持数据分析与处理。

(二)中层模型平台。在数据平台之上是模型平台。我们的模型平台采用三层架构:第一层是通用模型,第二层是垂直领域的综合模型,第三层是针对特定场景的专属模型。除了语言大模型之外,该平台还集成语音语义、多模态、图像等技术模块,以插件形式提供服务,以应对复杂多样的应用场景。

(三)训推平台和智能体平台。在模型平台上,还有一个模型的训练推理工具平台和智能体平台。这些平台共同构成了“平安脑”底层平台,用于支持业务中台,并实现对前端各种业务场景应用的规模化、标准化支持。

底层的通用模型包含了所有可用的模型,并且我们制定了标准规范。对于市场上出现的优质模型,无论是闭源还是开源,我们都会根据标准进行选择、筛选和引入。闭源模型通过采购获得,开源模型则直接引入。

通过这种标准化操作,我们能够快速替换和更新模型,以应对大模型领域的快速变化。这也是我们在春节后农历初八就能够全面上线这些模型应用的原因。

截至目前,中国平安在营销、服务、运营、风控等多个领域构建了丰富且具有巨大价值的系列应用场景,并已建立了一套完整的风险治理体系。针对大模型的应用,中国平安构建了十道风险防线,涵盖数据管理、模型本身以及问责体系等方面,形成了一个全面且系统化的风险防控架构。通过这套完善的风险治理体系,中国平安希望有效支持其广泛应用场景,并在具体业务中呈现明确的应用价值。

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值