“ RAG和微调即相似,又不完全相同,它们在能力上是互补的。”
很多人会奇怪RAG和微调有什么关系,而对RAG和微调了解的人应该都明白为什么会把RAG和微调放在一块讨论。
有些人说有了RAG就不需要微调,而另一些人说有了微调就不需要RAG,这到底是怎么回事?RAG和微调之间到底存在什么样的恩恩怨怨?
RAG与微调
作者在第一次看到RAG和微调的标题时,也是一脸懵逼;RAG和微调有什么关系,它们完全是两种不同的技术,为什么会被放在一块讨论?
而随着对大模型了解的加深,慢慢就发现RAG和微调却是有很大的关联,只不过两者的关系并不是很多人所认为的一山不容二虎,而是可以相互依存的关系。
看过前面介绍RAG文章的人应该都知道,RAG技术的出现是为了解决大模型存在的几个问题;而微调的出现是为了解决大模型在某些方面的不足。
从这一点来说,两者还是有很大共同点的;老话说条条大路通罗马,虽然两者的目的是一样的,但道路却是不一样的;这也是为什么会有RAG与微调技术的争论。
RAG的本质是通过检索外部资料库获取数据,并通过prompt提示词的方式输入到大模型中;其更像是一种外部工具,就类似于我们所使用的一些工具书,遇到不懂的东西就查一下,但也没必要刻意去记忆和理解。
而微调的本质是通过训练数据对大模型在某一方面进行强化;比如一个识图的大模型,可以强化一下让它在宠物方面有更好的效果;微调就类似于技能培训,其影响并不是一时的,而是终身的。
比如说一个文本模型,它在历史方面比较欠缺,这时就有两种解决办法;第一种就是使用RAG技术,遇到历史问题的时候先通过RAG检索一些资料;第二种就是微调技术,找到一堆历史数据,然后通过微调的方式让大模型去学习这些数据。
这两种方式不论使用哪一种都可以达到目的,但两者还有有所区别;比如说RAG技术的优点是成本低,耦合度低;一个文本模型使用RAG检索历史数据,那么它就是一个精通历史的大模型。而如果使用RAG检索科学数据,那么它就是一个科学家。
而微调模型,使用什么样的微调数据,大模型就会成为什么样的模型;同样的例子,如果使用历史数据进行微调,那么这个模型就只擅长历史方面的内容;你问它其它方面的知识,它就只能胡说八道了;或者就是再收集一批数据重新对模型进行微调;因此,微调的方式耦合度高,成本也高。
所以说,RAG就类似于一个掌握了学习方法论的学霸,不论什么内容,什么领域,因为他掌握了好的学习方法,所以他学什么都很快;而微调就类似于一个靠勤奋死记硬背的学霸,虽然他在某一方面很擅长,但因为没有掌握具体的学习方法;一旦换个领域,它就只能从头再来了。
然而,从应用的角度来说RAG和微调并不是水火不容的关系,很多时候往往需要两者配合使用。
比如说由于微调的成本比较高,因此我不可能因为一点新知识就对模型微调或训练一次;这时RAG就成为了一个很好用的工具。
同样,我不能因为我的工具比较多,就代表我的能力也比较强,然后就不想再学习了;虽然利用RAG可以让大模型解决很多问题,但这并不代表着大模型就拥有了强大的思维能力。
比如说你想搞一个用来搞科研的大模型,你不可能让一个只会查资料(RAG)的大模型去搞科研,因为你需要它能具备思考,实验和推理的能力,而不只是查资料的能力;这时,微调的作用就出现了,因为微调可以让大模型具备更好的知识和逻辑思维能力。
所以说,从某些方面来说RAG和微调解决的是同一个问题;但在其它方面,RAG能做到的事情,微调做不到;而微调能做到的事情RAG做不到。
因此,RAG和微调最好的协作方式就是互补;而不是针尖对麦芒。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。