RAG还是微调?AI落地的关键选择

你是否曾经面临这样的困境:部门刚刚决定采用大语言模型解决业务痛点,但技术团队却陷入了"到底该用RAG还是微调"的激烈争论中?

一边是成本控制派,坚持RAG轻量级方案;另一边是性能至上派,认为只有微调才能满足业务需求。

让我们跳出技术视角,用真实业务场景来理解这两种方案。

img

RAG与微调:各有所长的AI增强方案

小张负责公司客服系统升级,他思考着如何让AI客服能回答"今年的产品退换货政策是什么"这类问题。他面临两个选择:

给AI装个"实时查询系统",每次有人提问,AI就去企业知识库查最新政策(RAG)。

或者定期对AI进行"集中培训",让它记住所有政策内容(微调)。

这两种选择,就是当下企业AI落地的两条主要技术路径。

img

RAG像是给AI配了个实时搜索引擎。当你问它"最新产品退货政策",它先查询企业知识库找到相关文档,再结合自身能力生成回答。这种方式灵活度高,企业只需维护好知识库,不用改动AI本身。

微调则像是定期"补课"。企业收集大量业务数据,反复"教导"AI,直到它牢记专业知识。这样每次回答都是从"记忆"中直接调用,无需查询,速度更快

你可能会问:既然微调让AI直接记住了知识,性能更好,为什么不都用微调?

关键在于成本和灵活性

小王的法律咨询AI就很适合微调,因为法律条文相对稳定;而小李的电商平台价格查询系统用RAG更合适,因为商品价格每天都在变

实战选择:企业需求决定技术路径

了解了基本原理,我们来看几个真实场景,帮助你做出选择:

img

金融风控场景:某银行构建风控AI系统,需要快速识别可疑交易。由于风险模型相对稳定,且对反应速度要求极高,微调成为首选。银行投入200万训练成本,但系统上线后,处理时间从3秒降至0.5秒,大幅提升客户体验。

医疗知识问答:一家医院需要帮助医生快速获取最新研究成果。医学研究日新月异,且内容极其专业。医院选择了RAG方案,将各大医学期刊数据接入知识库,医生提问时AI能实时检索最新研究,投入仅50万就实现了良好效果。

电商助手:电商平台需要AI回答"这款手机支持5G吗"类问题。商品信息变化快,且数量庞大,完全微调成本高昂。平台采用RAG方案,每天自动更新商品知识库,不仅节省80%成本,还保证了信息时效性。

这些案例启示我们:没有放之四海而皆准的最佳方案,关键是找到适合自身业务需求的解决方案。

突破思维局限:RAG+微调组合拳

随着技术发展,越来越多企业开始采用"RAG+微调"的混合方案。微调解决专业性问题,RAG处理实时变化的信息

一家法律科技公司的做法值得借鉴:他们先对基础模型进行微调,让AI掌握法律专业能力;同时搭建RAG系统,实时检索最新法规和判例。这种组合策略使其AI助手既有专业深度,又能保持知识更新,客户满意度提升37%。

选择RAG还是微调,核心是理解自身业务需求。如果你的知识频繁变化,预算有限,RAG是理想选择;如果追求极致性能,内容相对稳定,微调更为合适。对于大多数企业来说,从RAG起步,逐步探索混合方案,往往是最务实的落地路径

在AI技术日新月异的今天,少一些技术偏执,多一些业务思考,才能真正让AI为业务创造价值。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值