在人工智能(AI)领域,随着大型语言模型(LLMs)的兴起,大型语言模型(LLMs)展现出了令人惊叹的能力,从智能聊天到复杂的文本生成,从精准的图像识别到高效的数据分析,它们正深刻地改变着人们的生活和工作方式。然而,这些强大模型的背后也存在诸多问题,如高昂的计算成本、有限的可访问性、数据隐私风险等。在这样的背景下,知识蒸馏技术应运而生,它就像一座桥梁,连接着大型模型的强大能力与小型模型的高效便捷,为人工智能的发展开辟了新的道路。
一、知识蒸馏的演变
知识蒸馏的概念最初起源于模型压缩领域,其核心思想是通过一种“教师-学生”框架,让一个小型模型(学生模型)从一个大型模型(教师模型)中学习,以在保持较高性能的同时降低计算复杂度和存储需求。然而,随着AI技术的不断进步,知识蒸馏的应用场景和内涵已远远超出了最初的模型压缩范畴。
在LLMs时代,知识蒸馏不再仅仅关注于表面的输出模仿,而是致力于转移教师模型的内部推理模式、对齐策略和领域特定见解。这种转变使得知识蒸馏成为了一种强大的方法,能够显著提升小型模型的效率、准确性和领域适应性。
二、知识蒸馏的工作原理
知识蒸馏的核心在于让教师模型将其学到的知识以一种易于理解的方式传授给学生模型。这通常涉及以下步骤:
-
教师模型训练:首先,使用一个大型数据集训练一个高性能的教师模型。
-
软标签生成:教师模型对输入数据生成软标签(即概率分布),这些软标签包含了关于不同类别之间关系的丰富信息。
-
学生模型训练:然后,使用这些软标签以及(可能)原始硬标签(即真实标签)来训练学生模型。学生模型的目标是尽可能地复制教师模型的输出。
-
损失函数优化:通过最小化学生模型输出与教师模型输出之间的差异(通常使用交叉熵损失或其他定制的损失函数),来优化学生模型。
三、知识蒸馏在LLMs时代的应用
在LLMs时代,知识蒸馏的应用变得更加广泛和深入。以下是几个关键的应用领域:
-
模型压缩:尽管知识蒸馏最初是作为模型压缩工具而提出的,但它在LLMs时代仍然发挥着重要作用。通过知识蒸馏,可以将大型LLMs压缩为小型模型,从而降低推理成本和提高部署效率。
-
领域特定优化:知识蒸馏允许学生模型专注于特定领域(如金融、法律或编程),而不是学习所有内容。这有助于提升学生模型在特定任务上的性能和准确性。
-
多教师蒸馏:当存在多个高性能LLMs时,可以使用多教师知识蒸馏方法,让学生模型从多个教师模型中学习。这种方法可以合并不同教师模型的推理风格,提高学生模型的泛化能力和鲁棒性。
-
自蒸馏和多级学习:自蒸馏是一种特殊的知识蒸馏方法,其中模型通过生成解释或附加训练数据来精炼自己。多级蒸馏则涉及使用一系列模型(从大到小)进行逐级知识传递,以逐步优化学生模型。
四、知识蒸馏与数据增强的协同作用
数据增强(Data Augmentation, DA)在知识蒸馏中扮演着至关重要的角色。通过生成技能特定、领域丰富的训练数据,数据增强可以显著增强知识蒸馏的有效性。数据增强不仅扩大了数据集的大小,更重要的是提高了数据集的质量,确保学生模型能够捕捉到教师模型的深层认知策略和领域专业知识。
在知识蒸馏过程中,数据增强和数据蒸馏是相辅相成的。数据增强提供了更丰富的训练样本,而知识蒸馏则确保了这些样本中的有用信息能够被有效地传递给学生模型。
五、知识蒸馏面临的挑战
尽管知识蒸馏在AI领域取得了显著进展,但它仍然面临着一系列挑战:
-
伦理和法律约束:知识蒸馏可能引发知识产权和数据许可方面的法律问题。例如,从闭源模型的输出中进行蒸馏是否构成合理使用或衍生作品是一个有争议的问题。此外,缺乏透明度使得验证蒸馏过程的合法性和伦理性变得困难。
-
性能权衡:虽然蒸馏模型在计算效率方面表现出色,但它们可能在某些方面牺牲性能,如复杂的推理能力和领域覆盖广度。找到效率和性能之间的最佳平衡仍然是一个开放的问题。
-
架构挑战:为了实现接近教师模型的性能,需要精心设计学生模型、匹配中间表示以及使用强大的数据增强技术。这些挑战增加了知识蒸馏的实施难度。
-
能源效率和可持续性:虽然小型学生模型的推理成本较低,但频繁的重新蒸馏过程可能是资源密集型的。因此,在考虑知识蒸馏的可持续性时,需要权衡重复蒸馏事件与大规模推理节省之间的利弊。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。