构建智能知识库 - 知识获取:Obsidian Web Clipper 的 AI 自动化流程
本文重点讲解知识获取阶段的 AI实践
。通过 Obsidian Web Clipper
和 DeepSeek
平台,实现自动提取 文章标签
、智能总结关键点
、生成价值评价
等功能。
文章提供了详细的实践指南,包括插件下载、基础配置、解释器配置等步骤,以及 Android 移动端的实操示例。
知识库建设分 4 个阶段(知识获取
->知识整理 ->知识连接 ->知识输出)。
知识获取
知识整理
知识连接
知识输出
我们知识获取阶段用哪些工具,如何使用 AI 来提效?
提取内容
我们收藏一篇文章稍后阅读,起码需要了解以下内容才能支撑我们制作一张卡片笔记。
1. 一句话总结 + 关键点提取
2. 生成评价,突出其价值和适用场景
3. 提取文章标签:限定领域的标签,比如软件开发
在没有 AI 之前,我们可能需要通读过后才能得出结论,但现在收藏后立刻就能提取上面的信息。
实践指南
插件下载
obsidian web clipper 是浏览器插件的形式。
插件安装:下载地址,支持 chrome,firefox,edge,safri 等主流浏览器。
基础配置
1. 新建模板配置用来将网页保存为 markdown。这里比较重要的几个设置包括笔记存放的 vault
和 文件夹
2. 新增一个 未归档
的 标签
,这样在 obsidian 里面可以按未归档来查询整理
解释器配置
什么是解释器
解释器是一个为 obsidian web clipper 的专门设计的功能,允许用户使用自然语言与网页交互。解释器帮助用户捕获和修改采集的内容并保存到 Obsidian。例如:
1. 提取特定文本片段。
2. 总结或解释信息。
3. 将文本翻译成另一种语言。
本质上这是一个 RAG 程序,上下文是解释器用于处理提示的页面,上下文越小,解释器运行越快。
解释器模型配置
1. 在 DeepSeek 官网开通 DeepSeek-api服务,创建 1 个 API key
2. 在 Obsidian Web Clipper
插件配置页,添加模型供应商,添加 DeepSeek
模型;
采集内容配置
配置解释器,定制提示词,采集时生成摘要
建议配置 2 个模板,1 个启用 AI,1 个不启用
解释器上下文使用默认即可,采集特定的网站可以定制 html 选择器,减少 token 消耗
笔记内容配置
未归档,{{"3个标签,逗号分隔"}} # {{"本文的中文标题"}} {{"本文的中文摘要,1句话提取核心内容,以及3个关键点,用有序列表展示"}} {{"本文的简短评价,突出其价值和适用场景"}} --- {{content}}
移动端
我使用的是 android 系统,安装好 obsidian 和 firefox 浏览器,然后火狐浏览器开启账号同步,在 obsidian clipper 中导入配置
导入电脑上的配置
文章高亮示例
采集示例
点击添加到 Obsidian,markdown 会自动存储到 vault 对应的目录。
手机端检测到文件更新后,liveSync 插件会自动同步,然后就可以进入知识整理阶段了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。