最近学习中医,发现学习新知识真的太难了。在读到某个药材、经络、方剂的时候,总想到这些内容之前在哪里读过, 然后往前翻,而且时长找不到。
于是乎,想到了 Obsidian,想到了知识图谱,想到了 AI 自动生成知识图谱。
整体的方案就是:
-
使用 Obsidian 转录数据
-
使用 AI 自动解析成 Wiki 格式
-
使用 Obsidian 的双线连接和图谱来发辅助学习
先看一下效果:
配合 Obsidian 自带的图谱功能,还可以看到漂亮的知识图谱,
大家可以根据自己的需要设置下节点颜色,
实现
原理也很简单,让 AI 把自己笔记的内容转换成需要的Wiki模式即可。
提示词
首先分享一下提示词:
你是一个 Obsidian 笔记处理助手,识别下面内容中出现的中药材、药方,添加 wiki 链接,并使用如下要求返回: 1. 原文中的药材名和经脉名称用 [[]] 包裹,返回原文 2. 请不要删除原文中出现的任何文字 下面是示例: # 原文 附子去脏腑之沉寒,浮而不降。治三阴之厥逆,走而无踪。反本固阳,童便煮用。干姜暖中,除寒邪腹痛,兼治呕吐。 # 回答 [[附子]]去脏腑之沉寒,浮而不降。治三阴之厥逆,走而无踪。反本固阳,童便煮用。[[干姜]]暖中,除寒邪腹痛,兼治呕吐。
提示词很简单,直接说出来你的需求即可,然后使用少样本提示给AI举例。
模型选择
对于文本的处理,我测试下来几乎所有的模型都能很好处理,比如:
-
GPT-3.5, GPT4o
-
Gemini
-
智谱 GLM4
-
通义千问
-
讯飞星火
对于 Kimi 等其他我没有 Key 的模型,我测试了下网页版,效果也挺好。
大模型发展2024 第二季度以来,我们能明显感觉到国内外所有的大模型发展速度变慢了,设置有种停滞的感觉, 从另一个方面也说明,国内外大模型已经比较成熟了,对于日常的个人和企业应用已经基本能满足。所以大部分时候,我们普通人不需要再去对比模型,哪个顺手用哪个,简单测试下够用就可以了,放下更多的经历在自己的业务上。
Obsidian 插件
在 Obsidian 里面实现我需求最近的方案就是写一个插件。
大家不要觉得写插件是很复杂的事情,从官网下载模板按照文档一步一步来,其实很简单。
下面给出中文和英文的教程:
-
Obsidian PLugin[1]
-
Obsidian 插件入门指南[2]
大家跟着来就行,我讲一下模板之外我们要做的事情。
注册指令
首先默认注册一个指令,这样就可以使用命令面板调用你的程序了。
import { Plugin } from "obsidian"; export default class ExamplePlugin extends Plugin { async onload() { this.addCommand({ id: "shuyi-wikilize-zhongyi", name: "数翼 Wikilize 中药", callback: () => { // 这里写你的代码 }, }); } }
快捷键如果这个操作经常用的话,其实使用快捷键更简单一些,不过为了录视频,快捷键显示不出来。
Obsidian 文本处理
获取当今笔记的内容可以使用 editor.getValue()
方法。
获取当前笔记的选中内容,可以使用 editor.getSelection()
方法。
AI的结果我这里就直接替换选中文字,如果没有选中文字,就追加到当前笔记,使用 editor.replaceSelection
即可。
// 调用你的 AI const result = await chat.sendMessageStream(prompt); for await (const item of result.stream) { editor.replaceSelection(item.candidates[0].content.parts[0].text) }
认证
如果只是本地自己用不需要发布,我们可以把认证的 API Key 放到 代码里面,直接调用即可。
如果想发布,可以加一个插件配置项:
new Setting(containerEl) .setName('Your API Key') .setDesc('Your api key') .addText(text => text .setPlaceholder('Enter your api key') .setValue(this.plugin.settings.apiKey) .onChange(async (value) => { this.plugin.settings.apiKey = value; await this.plugin.saveSettings(); }));
至此,我们就可以在 Obsidian 使用命令面板来调用插件,自动处理文本了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。