IEEE Trans|基于李雅普诺夫的微电网能源管理安全强化学习方法

2024年12月,IEEE Transactions on Neural Networks and Learning Systems期刊发表了一篇题为"Lyapunov-Based Safe Reinforcement Learning for Microgrid Energy Management"的研究论文。该文提出了一种基于李雅普诺夫的安全强化学习框架,用于解决微电网能源管理中的安全性问题。论文首次将李雅普诺夫理论应用于微电网能源管理领域,通过构建安全评估优化模型和约束马尔可夫决策过程,实现了能源管理方案的预评估和预修正,并从理论上保证了强化学习过程的安全性,为解决高渗透率可再生能源条件下微电网的安全高效运行提供了新的研究思路。

1. 研究背景与意义

可再生能源(Renewable Energy Sources,RES)的快速发展推动了其在微电网(Microgrid,MG)中的广泛应用。然而,由于RES的不确定性和间歇性特征,高比例的分布式RES可能给MG带来不可预测的风险,影响系统的稳定性和经济性。为应对这一挑战,需要通过先进的智能在线能源管理方法使MG能够适应RES的快速波动和不确定性,同时协调调度可控本地设备,如分布式发电机和储能系统(Energy Storage System,ESS)。

2. 现有方法评述

2.1 基于模型的方法

基于模型的方法通常基于MG设备参数建立数学模型,并通过特定概率分布表征RES不确定性。随后,采用随机规划或鲁棒优化技术制定最优MG能源管理方案。例如,一些研究利用RES分布信息进行场景采样,实施随机规划优化模型来降低住宅MG能源管理中的不确定性并减少各种场景下的运行成本。此外,为了在电源和负荷不确定性下实现更实用的调度,一些研究提出了鲁棒优化模型,以最小化最坏情况下的运行成本。

2.2 无模型方法

无模型方法主要依托强化学习(Reinforcement Learning,RL),通过与环境交互获取增量知识来训练控制策略。如研究表明,RL方法已成功开发并应用于MG能源管理,这些努力取得了接近理论最优的解决方案,并在不确定性适应性方面表现出优异的泛化能力。例如,有研究提出了基于RL的无模型在线动态调度方案,以增强MG面对不确定RES输出的恢复能力,结果突显了RL的强大学习能力和快速适应性。

3. 安全强化学习框架设计

本文提出了一种基于安全强化学习(Safe Reinforcement Learning,SRL)的MG能源管理框架,该框架包含三个主要组成部分。

3.1 安全评估优化模型

构建了基于MG物理信息的安全评估优化模型(Safety Assessment Optimization Model,SAOM),该模型结构如下图所示:

3.1.1 最差情景评估模型

该模型基于MG中的不确定性信息、确定性信息和物理信息构建。不确定性信息包括风电、光伏和负荷的预测输出,其预测误差服从高斯分布。确定性信息主要包括发电机输出功率、ESS剩余容量等反映MG当前状态的数据。

3.1.2 最差情景优化

对于被评估为不安全的能源管理方案,采用混合整数规划(Mixed Integer Programming,MIP)方法进行修正,以确保方案满足安全约束。优化目标是在保证安全的前提下,最小化修正方案与原方案的偏差。

3.2 约束马尔可夫决策过程建模

基于SAOM,将MG能源管理问题建模为基于评估的约束马尔可夫决策过程(Assess-based Constrained Markov Decision Process,A-CMDP)。该过程的交互机制如下图所示:

3.3 基于李雅普诺夫的安全策略优化

采用基于李雅普诺夫的安全策略优化方法进行策略学习。优化过程如下图所示:

4. 仿真验证与分析

4.1 实验设置

案例研究在一个直流MG上进行,包含2台柴油发电机、本地负荷、ESS、光伏系统和风力发电机。设备详细参数如表1和表2所示。MG通过输电线路与外部电网连接,能够双向交易电力。时间间隔设置为15分钟。

4.2 训练阶段性能对比分析

在累积奖励方面,SRL框架从训练初期就保持较高的奖励值约130,波动较小,并在约750个回合后稳定在160左右。相比之下,PPO算法在0-150回合期间经历了显著的奖励提升,伴随着150回合附近的明显波动。其他算法如软演员评论家(Soft Actor-Critic,SAC)、双延迟深度确定性(Twin Delayed Deep Deterministic,TD3)策略梯度和优势演员评论家(Advantage Actor-Critic,A2C)算法的累积奖励在训练后期都稳定在100左右。

在安全性方面,SRL框架在整个训练过程中累积约束违反始终保持在100以下,并在约550个回合后趋近于0。PPO算法在前250个回合中的累积约束违反持续超过100。虽然违反程度逐渐降至0并在250回合后保持稳定,但在420回合附近仍出现了几次超过100的违反。

约束违反次数统计显示,PPO算法在0-160回合期间发生了72次约束违反。SAC算法在前160个回合发生37次违反后,训练过程中不再出现违反。而TRPO和A2C算法在初始0-160回合的约束违反次数分别为144次和124次。

4.3 实际运行效果分析

在24小时MG运行场景中,各算法的性能表现如下:

在运行成本方面:

SRL框架的累计运行成本为1700,仅比PPO的1654高2.78%。考虑到SRL需要在安全策略集合内更新策略参数,这样的性能差异是可以接受的。两种方法均明显优于MIP方法的1973。

在功率波动应对能力方面:

以24:00时刻为例,网络负荷预测误差最大值为11.23 kW。MIP、SRL和PPO算法下系统的旋转备用容量分别为21.14 kW、57.28 kW和89.85 kW,均能满足功率波动需求。

5. 研究结论

5.1 理论方面

成功将李雅普诺夫函数应用于MG能源管理问题,构建了具有理论保证的安全策略集合,确保了策略更新过程的安全性。

5.2 方法创新

提出的基于评估的A-CMDP模型实现了能源管理方案的预评估和预修正,避免了不安全方案对MG的直接影响。

5.3 应用效果

通过数值实验验证了所提方法在保障MG运行安全的同时,实现了与传统RL算法相当的经济性能。在训练过程中实现了零约束违反,显著提升了系统的运行安全性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值