今早,谷歌Deep Research迎来史上最强升级,正式搭载了Gemini 2.5 Pro全球顶尖模型。
这一次,新版本在以下方面得到显著的提升:
- 分析推理:逻辑更清晰,结论更有深度
- 信息整合:从海量数据中快速提炼要点,化繁为简
- 报告洞察力:生成的报告不仅详尽,还能提供独到的见解。
谷歌CEO劈柴哥转发力挺。首席科学家、Gemini负责人Jeff Dean也出来为Deep Research站台。
可见谷歌内部对这款产品的重视程度。
相较于OpenAI DR,谷歌在整体性能上飙升超40%。此外,在指令遵循、全面性、完整性、写作质量方面,谷歌Deep Research性能跃升很大。
在内部测试中,谷歌DR生成的报告深受评估者青睐,程度远超其他领先DR工具2倍多。
这意味着,不论你需要分析复杂问题,还是撰写高质量报告,DR都能得心应手,节省数小时的时间。
不过,这次的升级将率先为Gemini Advanced订阅用户开放,仅需19.99美元,要比OpenAI DR(200美元/月)整整便宜10倍。
只需登录网页版、安卓版、或是iOS版GeminiApp,均可第一时间体验新功能。
而现在,已经有一大批网友开启测试,效果足够惊艳。
5分钟搞定46页论文+播客
量子物理学家、AI研究科学家ChrisUniverse第一时间对Gemini 2.5 Pro驱动的Deep Research做了测试。
体验之后他被深深震撼到了,「我们正处于技术和信息爆炸的奇点,速度前所未有。」他写道。
作为一名物理学家,ChrisUniverse让谷歌DR研究了过去五年纳米技术的突破。
仅仅这一个提示,谷歌DR就自己找到并研究了339个网站,生成了一篇长达46页的完整学术论文。
论文列举了5个全球知名的纳米技术实验室,详细总结了他们过去五年的重要技术突破以及未来的计划。
论文地址:
https://docs.google.com/document/d/1uxexZharvJJ8ScVFmhrDrFfiYtiSmQ9oeYkZBBxwDZ8/edit?tab=t.0
除此之外,论文中还通过表格对这五家研究机构做了详细的横向对比。
如果担心AI的幻觉问题,那也没关系,谷歌DR在结尾列出了十几页的数据来源链接。
这还不算完,如果你看到这份46页的论文比较头疼,那么再加一句提示词,谷歌DR立马帮你把论文转成一个10分钟的播客!
这样你就可以把一篇枯燥的学术论文变成一个类似真人的对话访谈,听着理解其中内容。
更厉害的是,所有这些过程一共还不到5分钟!
ChrisUniverse表示,现在自己了解了全球顶尖的5家纳米科技公司,包括它们的核心实验室、突破性成果,以及未来5年的重点方向。
「这些信息要是放在2年前,可能得花我几天甚至几周时间去研究,说不定还更久。」他说。
ChrisUniverse自己也没想到谷歌DR如此好用,已经好到让他无话可说了。
另一位AI大佬Kol Tregaskes提供一个话题——如何让AGI与人类价值观对齐,谷歌DR在极短时间内,直出46页报告。
他表示,这次改进比Gemini 2.0版本加持DR报告长度更多,而且与OpenAI DR相当。这从侧面印证了,谷歌基准测试中,DR的完整性是最强的。
而且,在报告文末,一共引用了138参考链接,在生成过程中查阅了足足179个参考网站,对于人类来说,一个时间根本看不完。
报告地址:https://docs.google.com/document/d/1e4qMho_5p-yfCx6Dqx8BhjW79qEg4C30uj1f1SKCA8k/edit?tab=t.0
沃顿商学院教授Ethan Mollick将课堂一项作业扔给谷歌DR——为一种采用新型光谱技术、成本75美元的食物热量检测设备进行定价及总体可获取市场(TAM)分析。
他惊喜地发现,Gemini 2.5加持的DR不仅完美完成分析,还提供更多深度洞察。
要知道,这类分析通常消耗数小时。
虽然一片叫好之声,网友Giulio Leone也指出了谷歌DR的一点问题。
他表示,虽然Gemini 2.5 Pro加持的DR非常强大,但一旦达到token数量限制,报告就会中断。
Giulio认为,谷歌应该让报告的生成可以无缝衔接,否则会在严肃的研究中受限。
胜券在握,DeepMind注定会赢?
不难看出,在AI激烈角逐中,谷歌DeepMind正以无可匹敌的优势崭露头角。
从数据到硬件,从模型到人才战略,他们似乎已经掌握了通往AGI的所有关键要素。
几天前,Artificial Analysis一份报告中,展示了谷歌在应用、基础模型、云服务、加速器硬件四大关键领域全面开花。
网友@ai_for_success分析称,谷歌DeepMind具备了海量的数据优势,依托谷歌生态系统的庞大资源,为训练更强大、更智能AI提供坚实基础。
而目前,DeepMind拥有业界公认的最优模型阵容,涵盖了多个领域。
比如,综合性能最强的旗舰模型Gemini 2.5 Pro;推理模型Gemini 2.0 Flash兼具速度与实用性;Veo 2成为视频生成领域的翘楚。
不仅如此,他们还手握TPU这张王牌,专为深度学习任务优化,性能和效率远超传统GPU。
再加上谷歌自身庞大的分发渠道,能够让DeepMind的成果无缝集成,迅速抵达全球用户。Google Cloud更是为AI提供高效部署平台。
这不,一年一度Google Cloud Next今晚将在拉斯维加斯召开,届时还会带来更多新品。
与此同时,谷歌开发者关系负责人Logan Kilpatrick也在频频暗示这周的重大发布。
在人才方面,谷歌DeepMind更是通过激进的「竞业禁止协议」,牢牢地锁住了AI顶尖人才。
据BI爆料,DeepMind部分英国员工在离职后,需遵守长达6-12个月的竞业协议,在此期间不得为竞争对手工作。
为了确保这些人才不流向对手,他们甚至还会为部分员工提供「花园休假」(garden leave),即在竞业期继续支付薪水,但员工务虚工作。
与其让人才立即跳槽至对手公司,谷歌宁愿花钱让他们休假一年。
一位前DeepMind员工无奈地表示,「在AI这个圈子,一年后再入职,谁会签你」?
的确,在AI日新月异的当下,6个月空窗期就可能让人错误无数机会,更不用说整整一年。
就连微软AI副总Nando de Freitas曾公开抨击了这种做法,称其为「滥用权力」。
谷歌这种做法,无非只有一个目的,在AGI竞赛中拔得头筹。
前谷歌员工甚至表示,「当前AI热潮如同『太空竞赛』,这是我职业生涯中看到如此疯狂的战争。领先6个月或是1年,可能就意味着一切」。
大模型、人才、数据、硬件,谷歌DeepMind几乎在这场终极赛的每个环节,都占据了制高点。
AGI终点尚不明朗,但至少现在,他们已经手握胜券的所有筹码。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。