大厂出手了,微软推出 SRE agent 做故障定位

微软最近推出了一个名为 Azure SRE Agent 的新工具,这是一款 AI 驱动的工具,可以更轻松地维持生产云环境。SRE Agent 有助于快速有效地响应事件,减轻管理生产环境的工作量。总体而言,它可以延长服务正常运行时间并降低运营成本。SRE agent 利用 LLM 的推理功能来识别快速根本原因分析和问题缓解所需的日志和指标。其高级 AI 功能可转变 Azure 中的事件和基础结构管理,使工程师能够专注于更有意义的工作。

img

您可以在 Youtube 上观看 SRE Agent 的演示视频。下面是为微软撰写的相关介绍:

随着越来越多的公司将其服务转移到线上,站点可靠性工程 (SRE) 对于保持关键系统的可靠性、可扩展性和成本效益变得至关重要。但 SRE 不仅仅是解决问题,它还涉及弥合业务目标和开发人员需求之间的差距。随着基础架构复杂性的增加,在预测未来可扩展性和可靠性需求的同时保持一切平稳运行比以往任何时候都更加困难。

我们从 SRE 那里听说,他们因重复的实时站点事件处理和日志分析任务而承受了巨大的负担,临时管理任务会扰乱他们的工作流程。响应事件是有压力的,因为几秒钟很重要,几乎没有出错的余地。

SRE agent 将 Microsoft 团队在运行 Azure 云方面积累的多年经验带给您的团队。

SRE agent 是一项新的 Azure 服务,它为站点可靠性工程师 (SRE) 和开发人员提供提高事件响应、诊断和协作的速度和效率所需的工具,以快速解决问题。它与其他可观测性和事件管理工具以及 GitHub Copilot 中的新编码代理无缝集成。它在后台 24x7 全天候运行,学习和监控 Azure 资源的运行状况和性能,处理生产警报,并合作进行事件调查和根本原因分析 (RCA) 以更快地缓解问题。

主要能力

SRE agent 可以帮助您的基础设施更加安全、灵活和可扩展,并有助于更快地检测和响应事件。

评估使用情况和性能趋势

SRE agent 会持续了解您的 Azure 资源,以构建有关它们的相关上下文,而无需使用多种工具。您可以提出问题以了解其属性、配置和最近的更改。您可以通过可视化相关指标来了解他们的运行状况和性能。这使开发人员能够快速识别需要注意的异常或趋势。

提示词样例

  • 我的应用程序在最后一天发生了什么变化?
  • 上次在我的应用程序上执行 slot swap 是什么时候?
  • 我应该为我的 Web 应用程序设置哪些警报?
  • 您能给我 AKS 群集的总体使用情况吗?
  • 我应该为我的应用程序设置哪些最佳实践?
  • 可视化我的应用程序上周的请求和 500 个错误

img

img

img

主动检测和修复安全漏洞

SRE agent 会持续审核 Azure 资源,以确保符合安全最佳实践。目前,它会检查受支持的 TLS 版本的使用情况,并验证资源是否启用了托管标识。SRE agent 不仅可以识别潜在漏洞,还可以执行必要的作,以便在您批准的情况下更新资源,使其合规。

img

自动化事件响应和更快的根本原因分析

SRE agent 可以立即响应 Azure Monitor 警报。您还可以与 PagerDuty 等事件管理工具集成,以扩展其警报处理功能。通过此集成,SRE agent 可以:

  • 检测到警报后开始调查。
  • 访问指标、活动日志、依赖项和控制面板,以形成假设并确定根本原因。

传统的 RCA 方法可能需要数小时 ,而 SRE agent 可以在几分钟内完成,从而最大限度地减少影响并加快解决问题的速度。

img

img

img

事故止损

为了尽快止损故障,SRE agent 可以代表用户并在获得用户的批准后执行动作。这些动作可能包括扩展资源、重新启动应用程序以及回滚到以前工作的应用程序版本。

img

与开发人员一起形成闭环

调查完成后,SRE 代理会创建一个 GitHub 问题,其中包含调查中的所有详细信息,帮助开发人员修复源代码并防止事件后续再次发生。

img

看起来很牛吧?Azure 云环境中保存了很多客户的服务的元信息,比如某个服务,部署在哪里,配置在哪里,是否发生变更,用了哪些安全组、哪些负载均衡等,这些信息为 AI 大展拳脚提供了一定的数据基础。如果你不是 Azure 客户,或者你在云下,很多元信息构建起来就有些费劲了。我们创业做的 Flashcat 也在尝试使用 AI 协助定位故障,我们的做法是通过一些轻量手段获取元信息,然后让 AI 去分析各种关联数据,示意图如下:

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值