优雅谈大模型13:一文读懂LoRA/DoRA/MoRA

Microsoft于2021年推出的LoRA是一种经济型微调模型参数的方法。现在大模型的参数规模动不动都在10亿级别以上,微调大模型(微调这里代表着SFT,例如读者将某个大模型拿到自身领域,想使用自身领域的知识再次训练和精校大模型,就属于模型微调的领域。)的全面微调模式下,需要调整所有的参数,因此所需要的资源和时间巨大。

LoRA提出了一种微训练模型的新方法,在冻结大部分的模型参数之余,仅仅更新额外的部分参数。同时它的性能与“微调大模型的全部参数”相似,但是能够将训练参数的数量减少了10,000倍,GPU内存需求减少了3倍。这以为着在消费级的GPU也可以运行这种计算和内存效率更高的新方法。

LoRA

在学习完[“神经网络与矩阵”]的时候,读者都可以知道神经网络都可以用矩阵来表示。LoRA 假设微调期间的权重更新可以很好地近似于低秩矩阵。LoRA不会更新全权重矩阵W,而是将更新分解为两个较小的矩阵A和B。

在这里插入图片描述

上图左侧为原始论文的配图,右图为另外的视角。举个例子,若原始权重W为d*k的格式,那么一共存在4096(d)×4096(k)=16,777,216个参数。

这时候LoRA使用A(d*r)和B(r*k)来代表权重更新,因为A和B的矩阵相乘也是d*k维度的。假设r为8,则LoRA需要更新的权重参数为4096×8+ 8×4096 =65,536个参数。<一下子要更新的模型参数下降了N倍!>

具体的训练过程是这样的,将原来的矩阵参数固定,然后利用新的数据继续训练大模型,而这个训练过程仅仅更新A和B矩阵。在推理使用的时候,将原来的矩阵W和(A*B)相加。下图为可视化版本:

r如何选择,什么的数值是合理的?原始的论文在某些模型上给出了实验的结果,一般而言都是r=4或者r=8,当然这个超参数还是需要具体场景具体分析。

从先期的实验数据而言,LoRA的效果还是不错的。然而LoRA最主要的问题在于矩阵被投影到更小的维度上,因此在此过程中肯定会丢失一些信息。

在各种方法和基础模型中,LoRA在减少训练参数和性能保障之间的确表现优异。

伴随着[量化技术],可以将量化引入LoRA,因此诞生了QLoRA。例如神经网络的权重存储为32位浮点数(FP32)。量化可以将其转换为较低精度的点,例如16位或者8位(UINT-8或INT8)。

DoRA

权重分解低秩适应 (DoRA) 将预先训练的权重分解为两个分量:幅度和方向。如下图所示,原来参数矩阵W的维度依旧是d*k,新增了一个幅度向量m(1*k)。

上图绿色部分为需要被训练,而蓝色部分的参数表示在微调训练中是被冻结的。DoRA在训练A和B矩阵的时候,还是利用了LoRA的办法。然而新增了幅度M向量。

可以将矩阵的每列都看成向量,每列的权重矩阵都可以用大小和方向表示。例如可以将[2.0, 3.0]分解为0.5*[4, 6]。在进行完全微调时,梯度更新只是改变了列向量的方向,而幅度却保持几乎恒定。

下图为可视化的过程:

DoRA将列向量分解为2个分量可以更加灵活地更新方向分量,这更接近于完全微调。

MoRA

MoRA 的概念类似于 LoRA,但不是将权重矩阵分解为更小的维度,而是将其分解为小的方形矩阵。

例如,如果原始权重层具有4096×4096~= 16M参数,则r=8的LoRA具有4096×8 + 8×4096=65,536参数。使用MoRA可以将维度减小到r=256,即256×256=65,536。在这两种情况下,需要训练和更新的参数是相同的,然而研究人员声称与LoRA相比具有更高的学习代表性。

根据这篇2024年5月的论文,LoRA的局限性之一是无法记住大量数据。“对于LoRA观察到的这种限制,一个合理的解释可能是它对低秩更新的依赖。低秩更新矩阵 ∆W ,很难估计FFT中的全秩更新,尤其是在需要记忆特定领域知识的持续预训练等内存密集型任务中。

为了论证这个观点,研究人员研究了LoRA和FFT在通过微调记忆新知识方面的差异。为了避免利用 LLM 的原始知识,研究人员随机生成10K对通用唯一标识符 (UUID),每对包含两个具有32个十六进制值的UUID。该任务要求LLM根据输入的UUID生成相应的UUID。例如,给定一个UUID,比如“205f3777-52b6-4270-9f67-c5125867d358”,模型应该根据10K个训练对生成相应的UUID。这个任务也可以看作是一个问答任务,而完成它所必需的知识完全来自训练数据集,而不是LLM本身。

在这里插入图片描述

怎么说呢,小编认为还是需要再实战中多做检验。下图为完整的可视化过程。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值