全面概述用于控制大型语言模型 (LLM) 中的文本生成的技术和方法,重点是理论基础和实际实现。
大模型可控文本生成(CTG)综述
可控文本生成的需求
可控文本生成(CTG)必须满足两个主要要求:
-
满足预定义的控制条件:确保生成的文本符合指定的标准,例如主题一致性、安全性和风格一致性。
-
保持文本质量:确保生成的文本流畅、有用且多样化,同时平衡控制和整体质量。
与大语言模型中的可控生成相关的Web of Science上的出版趋势
大型语言模型(LLMs)的可控性维度和能力维度
可控文本生成的形式化定义
对CTG的定义如下:
-
与 LLM 能力的关系:CTG 是一个与 LLM 的客观知识能力正交的能力维度,侧重于如何呈现信息以满足特定需求,例如风格或情感。
-
控制条件的注入:可以使用文本语料库、图表或数据库等资源将控制条件集成到文本生成过程的各个阶段。
-
CTG 的质量:高质量的 CTG 在遵守控制条件和保持生成文本的流畅性、连贯性和有用性之间取得平衡。
可控文本生成任务
对可控文本生成(CTG)的任务进行了分类,主要分为以下两个大类:
- 内容控制(Content Control):也称为语言学控制或硬控制,专注于生成文本的具体元素,如文本的结构和词汇。这种类型的控制要求模型根据预定义的规则精确生成文本内容。内容控制包括:
-
结构控制:包括特定格式(如诗歌、食谱等)、组织结构(如段落划分、标题使用、列表排列)和长度控制。
-
词汇控制:确保文本包含预定义的关键词集,以及避免使用可能有害或不适当的术语。
- 属性控制(Attribute Control):也称为语义控制或软控制,关注文本的抽象语言属性,如情感、风格和主题。这种类型的控制旨在确保生成的文本在更高层次上反映特定的语义特征。属性控制包括:
-
安全性控制:包括去除有害内容和遵守法律法规。
-
情感控制:确保文本表现出明确的情感倾向,如积极、消极或中性。
-
风格控制:包括通用风格(适应特定场合和行业的专业沟通风格)和个人风格(模仿特定写作风格或根据个人喜好生成个性化文本)。
-
主题控制:确保文本严格遵守指定的主题。
4.可控文本生成方法分类
干预阶段、控制方法、特定方法和示例方法的分类
可控文本生成(CTG)方法分类:
-
模型驱动方法:使用分类器、条件语言模型或直接从LLMs本身注入知识。
-
数据驱动方法:利用丰富的数据资源,如文本语料库、词典、图和数据库来注入知识。
CTG中条件的注入
可控文本生成(CTG)的方法主要分为两个阶段:训练阶段和推理阶段
可控文本生成方法的分类
训练阶段方法
-
重训练(Retraining):从头开始训练新模型或对现有模型架构进行根本性修改,以更好地适应特定的控制条件。这通常在现有预训练模型无法满足新要求时采用。
-
微调(Fine-Tuning):通过使用专门设计的小型数据集来调整预训练模型,使其更好地符合特定的控制属性,而无需从头开始训练模型。
-
强化学习(Reinforcement Learning):使用奖励信号来引导模型输出朝向特定的控制目标。通过迭代优化,模型学习使其输出与这些目标对齐。
推理阶段方法
-
提示工程(Prompt Engineering):在推理阶段,通过设计特定的输入提示来直接影响文本生成,而无需对模型参数进行广泛调整。
-
潜在空间操作(Latent Space Manipulation):通过调整模型隐藏层中的激活状态来控制生成的文本,允许在不改变模型权重的情况下精确控制文本生成过程。
-
解码时干预(Decoding-time Intervention):在解码过程中修改生成输出的概率分布或应用特定规则,以影响单词选择,确保输出与特定控制条件对齐。
具体方法示例
-
重训练:例如CTRL模型,通过在训练文本前添加控制代码来区分不同的控制条件。
-
微调:例如Adapter-Based Fine-Tuning和Data-Driven Fine-Tuning,使用辅助模型或特定数据集来调整模型输出。
-
强化学习:例如Automated Feedback和Human Feedback方法,使用自动评估指标或人类反馈来优化模型。
Controllable Text Generation for Large Language Models: A Survey``https://arxiv.org/pdf/2408.12599``https://github.com/IAAR-Shanghai/CTGSurvey
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。