一文总结AI智能体与传统RPA机器人的16个关键区别

基于LLM的AI Agent(智能体)与RPA(机器人流程自动化,Robotic Process Automation)两种技术在自动化任务领域中扮演着至关重要的角色。AI智能体能够借助LLM拥有极高的灵活性,可以实时理解和响应环境的变化,并自主进行推理、决策与行动。而RPA是一种依赖预定义规则和工作流程的自动化技术,通过模拟人工操作来执行重复性高、流程清晰的任务。两者在自动化目标、实施效果、应用场景等方面具有诸多的相似点。

本文和大家分享关于AI智能体与传统RPA机器人之间区别的详细总结。帮助从更多的角度来认识这两种技术,以更好地在实际应用中作出决策。

需要注意的是,尽管AI Agent与RPA在诸多方面有着区别,且近两年AI Agent随着LLM的兴起得到蓬勃的发展,但并不是水火不容的相互取代关系,而是可以实现优势互补。比如通过将AI Agent融入RPA流程中,企业可以增强RPA系统的智能化,使其具备处理非结构化数据的能力,并动态适应复杂环境。

1. 灵活性、自主性、推理能力

AI Agent:具备灵活应变和自主决策能力。AI代理在处理任务时能够动态适应环境,例如在客户服务中,当用户提出意料之外的问题时,AI代理可以根据上下文和推理判断来调整响应策略。

RPA:依赖预设的规则和步骤,难以适应环境的变化。例如,RPA机器人用于数据输入时,如果表格格式变化,就可能因无法适应而导致出错或崩溃。

2. 环境状态的感知

AI Agent:具有状态感知的精细粒度,可以动态更新自身状态并跟踪环境。这使它们能够跟踪随时间的变化并相应地调整其行动。

RPA:缺乏实时状态跟踪能力。RPA通常只执行固定的工作流程,不太擅长处理需要情境感知的复杂或不断发展的任务。

3. 自动化的方法

AI Agent:利用机器学习和自然语言处理进行决策。例如,AI代理可以处理复杂的合同审查任务,使用NLP技术识别合同中的关键信息并生成建议。

RPA:通常采用基于规则的自动化方法,如屏幕抓取和宏操作,这些方法缺乏灵活性。例如,RPA机器人在将数据从电子表格录入CRM系统时,如果CRM界面更改,可能需要重新编程。

4. 人机协同(HITL)

AI Agent:复杂任务中可以通过HITL(Human-in-the-Loop)机制让人类介入,比如自动驾驶汽车遇到突发情况时,可以将控制权交还给司机。

RPA:依赖于固定的异常处理机制。例如,RPA用于财务报表生成时如果出现异常数据,会将错误报告给人工处理,但不具备智能交互能力。

5. 管理成本

AI Agent:尽管部署和维护成本较高,但其适应性和效率可以长期降低总成本,例如智能客服系统可以减少人工服务成本。

RPA:前期成本较低,适合重复性高的简单任务,例如数据迁移或定期生成报告,但后期可能维护成本高(比如为了适应UI层面的变化)。

6. 优化延迟

AI Agent:利用优化策略来最小化延迟,通常是通过预取数据、并行处理等。但对于推理和分解任务来说,延迟通常很难改善。例如在实时推荐系统中,AI代理可以并行处理多种数据流,实时更新推荐。

RPA:通常由于线性工作流程而存在较高的延迟,实时优化的方法有限。

7. 任务动作序列

AI Agent:使用大型语言模型(LLM)生成动态动作序列,适合复杂的任务流。例如,智能助手可以根据用户的问题生成多个查询步骤,灵活调整。

RPA:动作序列固定,无法具备LLM驱动的灵活性。例如RPA在处理发票时仅能依次完成每个步骤,无法根据环境变化自适应调整。

8. 外部的工具集成

AI Agent:能够轻松集成多种工具和服务,例如AI客服系统可以与多种API、数据库或外部资源集成,以动态获取用户数据并进行个性化推荐。AI Agent可以利用LLM具备动态推理与使用新工具的能力。

RPA:需要手动配置,但难以动态适应新的工具。例如,RPA与新财务系统集成时通常需要大量代码调整。

9. 可解释性/可观察性/可检查性

AI Agent:这包括可解释性和可观察性功能,以提供对决策过程的洞察,这对于信任和合规性至关重要。在大多数情况下,AI Agent这方面是缺乏的。

RPA:不同的工作流有明确的事件顺序,具有更好的可解释性与观察性。

10. 流程设计工具

AI Agent:通常依赖于传统的编程环境,特别是较为复杂的任务配置。目前也出现了部分低代码的可视化Agent设计平台,但在复杂任务上通常较为局限。

RPA:通常支持图形化的RPA流程设计画布,易于通过拖拽方式配置与调整流程。

11. 自适应学习能力

AI Agent:可以随着时间的推移从新的数据和经验中学习,从而能够自主改进。例如,个性化推荐系统会根据用户的行为不断改进推荐策略。

RPA:只能按照预设规则操作,缺乏学习能力,需要人为调整规则来适应变化。

12. 动态任务分解

AI Agent:可以动态地将复杂任务分解为更小、更易于管理的子任务,并根据实时反馈进行调整。

RPA:通常是线性的、固定的任务序列,通常无法动态地分解复杂任务。

13. 实时决策

AI Agent:能够根据实时数据与上下文做出决策。

RPA:遵循固定的规则与预编程逻辑的决策,无实时调整能力。

14. 非结构化数据处理

AI Agent:可以理解与处理如自然语言文本、图片等非结构化数据,适合情感分析、内容创作等任务。

RPA:通常只能处理明确定义与分类的结构化数据,例如结构化表格。

15. 复杂目标导向

AI Agent:能够自适应地达到复杂的长远目标,例如自动驾驶系统根据环境情况动态调整驾驶策略。

RPA:通常仅适用于某个明确目标的特定任务。

16. 不同环境中的可扩展性

AI Agent:,部署在多种环境中易于扩展,且只需最少的配置更改即可轻松扩展。

RPA:通常与UI及现有应用的耦合度较大,为了适应新的环境,一般需要较复杂的迁移且需大量定制。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值