AI OS(人工智能操作系统)架构作为构建智能应用的基石,其设计和实现对于推动智能化转型至关重要。AI OS架构通常包含多个层次,这些层次相互协作,共同实现智能化应用的功能。从底层到上层,这些层次可以大致分为硬件抽象层、核心管理层、中间件服务层、应用框架层与用户界面层。同时,AI OS还融合了传统操作系统的基本功能与AI算法,使其能够自我学习、优化,并洞悉用户的行为习惯。
AI OS不仅仅是传统意义上的操作系统,它融合了人工智能技术,特别是大模型的自我学习能力。这种结合使得操作系统能够动态地学习和适应,从而提供更加个性化的服务和优化。通过集成大模型,AI OS可以形成基于PC的智能体,这个智能体能够监控和分析PC的整体性能,包括CPU、内存、硬盘等资源的使用情况。基于这些分析,智能体可以自动调整系统设置,以最优化的方式完成任务,比如调整电源管理、优化进程调度等。AI OS还能够形成基于用户的智能体,这个智能体通过分析用户的行为、偏好和习惯,来提供更加个性化的用户体验。例如,它可以预测用户接下来可能需要的应用程序或服务,并提前加载或准备,从而加快响应速度和提高用户体验。
AI OS与传统OS的区别
AI OS将支持更多的设备和平台,实现无缝连接和智能协同。边缘计算的兴起,AI OS的智能处理能力将在设备端得到进一步增强。数据安全与隐私保护将成为AI OS设计中的重要环节,通过数据加密、隐私保护算法和安全审计等机制保障用户数据安全。能够实时监测和防御各种网络攻击和威胁。同时,它还可以根据用户的行为和偏好,提供更加个性化的安全设置和防护,确保用户的数据和隐私安全。AI OS将不断学习和优化自身的智能化服务能力,为用户提供更加贴心和个性化的服务体验。AI OS支持多模态交互,包括语音、文本、图片等,使得用户可以通过更加自然和直观的方式与系统进行互动。这大大提升了用户的交互体验,使得操作更加便捷和高效。
AI OS架构的应用场景广泛,包括但不限于智能家居、智能交通、智能医疗等领域。在智能家居领域,AI OS可以通过手机控制家中的灯光、电器等设备,实现智能化的家居管理。在智能交通方面,AI OS可以实时监测交通流量并提供智能导航服务,帮助人们规划最优出行路线。在智能医疗领域,AI OS则可以通过分析医疗数据为患者提供远程医疗监护和及时的医疗服务。
AI OS代表了操作系统的一个未来发展方向,即更加智能化、个性化和自适应。AI OS通过将人工智能技术与传统操作系统相结合,实现了对电脑软硬件资源的更深入了解和优化,同时也提供了更加个性化和智能化的用户体验。随着人工智能技术的不断发展和完善,AI OS有望在未来的计算机系统中扮演更加重要的角色。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。