🚀 快速阅读
-
功能:PPTAgent 支持从文档自动生成高质量演示文稿,涵盖大纲生成、幻灯片设计与内容评估。
-
技术:基于两阶段编辑方法,结合大型语言模型(LLM)实现智能分析与迭代优化。
-
应用:适用于教育、企业培训、市场营销等多个领域,提升演示文稿生成效率与质量。
正文(附运行示例)
PPTAgent 是什么
PPTagent-advanced
PPTAgent 是由中国科学院软件研究所中文信息处理实验室推出的创新框架,旨在通过模仿人类工作流程的两阶段编辑方法,从文档自动生成高质量的演示文稿。该框架通过分析参考演示文稿,提取结构模式和内容模式,并基于代码动作草拟大纲并生成幻灯片,确保内容的一致性和对齐。
PPTAgent 基于大型语言模型(LLM)的能力,将演示文稿生成过程分解为迭代的编辑工作流程,从而提高生成演示文稿的连贯性和适应性。此外,PPTAgent 还引入了 PPT Eval 评估框架,从内容、设计和连贯性三个维度全面评估生成的演示文稿质量,为未来的演示文稿生成研究提供宝贵的资源和见解。
PPTAgent 的主要功能
-
分析参考演示文稿:理解其结构模式和内容模式。
-
草拟大纲:基于分析结果,创建详细的演示文稿大纲。
-
生成幻灯片:基于代码动作,将大纲转化为具体的幻灯片内容,确保内容的一致性和对齐。
-
编辑和修正:提供反馈机制,对生成的幻灯片进行编辑和自我修正,提高生成文稿的质量。
-
综合评估:基于 PPT Eval 框架,从内容、设计和连贯性三个维度评估生成的演示文稿质量。
PPTAgent 的技术原理
-
第一阶段:演示文稿分析
-
幻灯片聚类:将幻灯片分为结构幻灯片和内容幻灯片,分别通过 LLM 和层次聚类方法进行分析。
-
模式提取:利用 LLM 的情境感知能力,提取多样化的内容模式,确保编辑的目的性。
-
第二阶段:演示文稿生成
-
大纲生成:指导 LLM 创建结构化大纲,结合文档内容和参考演示文稿的语义信息。
-
幻灯片生成:在大纲指导下,基于迭代编辑参考幻灯片生成新幻灯片,并通过 API 支持文本和视觉元素的编辑。
如何运行 PPTAgent
运行该项目一般需要以下几个步骤,确保你已经安装了 Node.js 和 npm(或 yarn)。以下是详细的步骤:
1. 安装 Node.js 和 npm(如未安装)
Vue 项目依赖于 Node.js 环境。如果你还没有安装 Node.js,可以访问 Node.js 官网 下载并安装适合你操作系统的版本。npm 会随 Node.js 一起安装。
2. 克隆该项目到本地运行环境
git clone https://github.com/icip-cas/PPTAgent.git
3. 进入项目目录
进入到项目web_ui目录。例如:
cd PPTAgent/pptagent_ui
4. 安装依赖
在项目目录下运行以下命令来安装项目所需的依赖包:
npm install # 或者使用 yarn # yarn install
5. 运行开发服务器
安装完依赖后,你可以通过以下命令启动开发服务器:
npm run serve # 或者使用 yarn # yarn serve
这将启动一个本地开发服务器,默认情况下会在 http://localhost:8080
提供项目。你可以通过浏览器访问这个地址来查看你的 Vue 应用。
如何使用 PPTAgent 评估生成的 PPT
1. 安装依赖
pip install -r requirements.txt sudo apt install libreoffice sudo apt install poppler-utils
2. 生成演示文稿
python rebuild.py rebuild_all --out_filename "final.pptx"
3. 将 PPT 转换为图片
python evals.py pptx2images
4. 评估演示文稿
python evals.py eval_experiment -s 0 -j 0
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。